ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species

被引:320
作者
Hendriks, JHM [1 ]
Kolbe, A [1 ]
Gibon, Y [1 ]
Stitt, M [1 ]
Geigenberger, P [1 ]
机构
[1] Max Planck Inst Mol Plant Physiol, D-14476 Golm, Germany
关键词
D O I
10.1104/pp.103.024513
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed reaction in the pathway of starch synthesis. It was recently shown that potato (Solanum tuberosum) tuber AGPase is subject to redox-dependent posttranslational regulation, involving formation of an intermolecular Cys bridge between the two catalytic subunits (AGPB) of the heterotetrameric holoenzyme (A. Tiessen, J.H.M. Hendriks, M. Stitt, A. Branscheid, Y. Gibon, E.M. Farre, P. Geigenberger [2002] Plant Cell 14: 2191-2213). We show here that AGPase is also subject to posttranslational regulation in leaves of pea (Pisum sativum), potato, and Arabidopsis. Conversion is accompanied by an increase in activity, which involves changes in the kinetic properties. Light and sugars act as inputs to trigger posttranslational regulation of AGPase in leaves. AGPB is rapidly converted from a dimer to a monomer when isolated chloroplasts are illuminated and from a monomer to a dimer when preilluminated leaves are darkened. AGPB is converted from a dimer to monomer when sucrose is supplied to leaves via the petiole in the dark. Conversion to monomeric form increases during the day as leaf sugars increase. This is enhanced in the starchless phosphoglucomutase mutant, which has higher sugar levels than wild-type Columbia-0. The extent of AGPB monomerization correlates with leaf sugar levels, and at a given sugar content, is higher in the light than the dark. This novel posttranslational regulation mechanism will allow starch synthesis to be regulated in response to light and sugar levels in the leaf. It complements the well-characterized regulation network that coordinates fluxes of metabolites with the recycling of phosphate during photosynthetic carbon fixation and sucrose synthesis.
引用
收藏
页码:838 / 849
页数:12
相关论文
共 62 条
[1]   Activation of the potato tuber ADP-glucose pyrophosphorylase by thioredoxin [J].
Ballicora, MA ;
Frueauf, JB ;
Fu, YB ;
Schürmann, P ;
Preiss, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (02) :1315-1320
[2]   A comparison of the carbohydrate composition and kinetic properties of sucrose phosphate synthase (SPS) in transgenic tobacco (Nicotiana tabacum) leaves expressing maize SPS protein with untransformed controls [J].
Baxter, CJ ;
Foyer, CH ;
Rolfe, SA ;
Quick, WP .
ANNALS OF APPLIED BIOLOGY, 2001, 138 (01) :47-55
[3]   Characterization of the genes encoding the cytosolic and plastidial forms of ADP-glucose pyrophosphorylase in wheat endosperm [J].
Burton, RA ;
Johnson, PE ;
Beckles, DM ;
Fincher, GB ;
Jenner, HL ;
Naldrett, MJ ;
Denyer, K .
PLANT PHYSIOLOGY, 2002, 130 (03) :1464-1475
[4]   ALTERATIONS IN GROWTH, PHOTOSYNTHESIS, AND RESPIRATION IN A STARCHLESS MUTANT OF ARABIDOPSIS-THALIANA (L) DEFICIENT IN CHLOROPLAST PHOSPHOGLUCOMUTASE ACTIVITY [J].
CASPAR, T ;
HUBER, SC ;
SOMERVILLE, C .
PLANT PHYSIOLOGY, 1985, 79 (01) :11-17
[5]   Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis [J].
Castresana, J .
MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (04) :540-552
[6]   Transgenic Arabidopsis plants with decreased activity of frustose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase have altered carbon partitioning [J].
Draborg, H ;
Villadsen, D ;
Nielsen, TH .
PLANT PHYSIOLOGY, 2001, 126 (02) :750-758
[7]  
EDARDS G, 1983, C3 C4 MECH CELLULAR
[8]   Mechanism of reductive activation of potato tuber ADP-glucose pyrophosphorylase [J].
Fu, YB ;
Ballicora, MA ;
Leykam, JF ;
Preiss, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (39) :25045-25052
[9]   Phloem-specific expression of pyrophosphatase inhibits long-distance transport of carbohydrates and amino acids in tobacco plants [J].
Geigenberger, P ;
Lerchl, J ;
Stitt, M ;
Sonnewald, U .
PLANT CELL AND ENVIRONMENT, 1996, 19 (01) :43-55
[10]   Regulation of sucrose and starch metabolism in potato tubers in response to short-term water deficit [J].
Geigenberger, P ;
Reimholz, R ;
Geiger, M ;
Merlo, L ;
Canale, V ;
Stitt, M .
PLANTA, 1997, 201 (04) :502-518