Monopole antenna arrays for optical trapping, spectroscopy, and sensing

被引:72
作者
Cetin, A. E. [1 ,2 ]
Yanik, Ahmet Ali [1 ,2 ]
Yilmaz, Cihan [3 ]
Somu, Sivasubramanian [3 ]
Busnaina, Ahmed [3 ]
Altug, Hatice [1 ,2 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
[2] Boston Univ, Photon Ctr, Boston, MA 02215 USA
[3] Northeastern Univ, NSF Nanoscale Sci & Engn Ctr High Rate Nanomfg, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.3559620
中图分类号
O59 [应用物理学];
学科分类号
摘要
We introduce a nanoplasmonic platform merging multiple modalities for optical trapping, nanospectroscopy, and biosensing applications. Our platform is based on surface plasmon polariton driven monopole antenna arrays combining complementary strengths of localized and extended surface plasmons. Tailoring of spectrally narrow resonances lead to large index sensitivities (S similar to 675 nm/RIU) with record high figure of merits (FOM similar to 112.5). These monopole antennas supporting strong light localization with easily accessible near-field enhanced hotspots are suitable for vibrational nanospectroscopy and optical trapping. Strong optical forces (350 pN/W/mu m(2)) are shown at these hotspots enabling directional control with incident light polarization. (C) 2011 American Institute of Physics. [doi:10.1063/1.3559620]
引用
收藏
页数:3
相关论文
共 14 条
  • [1] Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays
    Adato, Ronen
    Yanik, Ahmet A.
    Amsden, Jason J.
    Kaplan, David L.
    Omenetto, Fiorenzo G.
    Hong, Mi K.
    Erramilli, Shyamsunder
    Altug, Hatice
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (46) : 19227 - 19232
  • [2] Biosensing with plasmonic nanosensors
    Anker, Jeffrey N.
    Hall, W. Paige
    Lyandres, Olga
    Shah, Nilam C.
    Zhao, Jing
    Van Duyne, Richard P.
    [J]. NATURE MATERIALS, 2008, 7 (06) : 442 - 453
  • [3] Edwards D.F., 1985, Handbook of optical constants of solids
  • [4] Nanometric optical tweezers based on nanostructured substrates
    Grigorenko, A. N.
    Roberts, N. W.
    Dickinson, M. R.
    Zhang, Y.
    [J]. NATURE PHOTONICS, 2008, 2 (06) : 365 - 370
  • [5] Integration of plasmonic trapping in a microfluidic environment
    Huang, Lina
    Maerkl, Sebastian J.
    Martin, Olivier J. F.
    [J]. OPTICS EXPRESS, 2009, 17 (08): : 6018 - 6024
  • [6] Improved SERS Performance from Au Nanopillar Arrays by Abridging the Pillar Tip Spacing by Ag Sputtering
    Huang, Zhulin
    Meng, Guowen
    Huang, Qing
    Yang, Yajun
    Zhu, Chuhong
    Tang, Chaolong
    [J]. ADVANCED MATERIALS, 2010, 22 (37) : 4136 - +
  • [7] Kabashin AV, 2009, NAT MATER, V8, P867, DOI [10.1038/NMAT2546, 10.1038/nmat2546]
  • [8] Biomedical applications of plasmon resonant metal nanoparticles
    Liao, Hongwei
    Nehl, Colleen L.
    Hafner, Jason H.
    [J]. NANOMEDICINE, 2006, 1 (02) : 201 - 208
  • [9] A Nanoparticle Convective Directed Assembly Process for the Fabrication of Periodic Surface Enhanced Raman Spectroscopy Substrates
    Liberman, V.
    Yilmaz, C.
    Bloomstein, T. M.
    Somu, S.
    Echegoyen, Y.
    Busnaina, A.
    Cann, S. G.
    Krohn, K. E.
    Marchant, M. F.
    Rothschild, M.
    [J]. ADVANCED MATERIALS, 2010, 22 (38) : 4298 - +
  • [10] Optical Forces in Plasmonic Nanoparticle Dimers
    Miljkovic, Vladimir D.
    Pakizeh, Tavakol
    Sepulveda, Borja
    Johansson, Peter
    Kall, Mikael
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (16) : 7472 - 7479