Fracture resistance characteristics of mild steel under mixed mode I-II loading

被引:4
作者
Wang, Yanlin [1 ]
Wang, Weigang [1 ]
Zhang, Bohua [1 ]
Bian, Yadong [2 ]
Li, Chun-Qing [1 ]
机构
[1] RMIT Univ, Sch Engn, Melbourne, Vic 3001, Australia
[2] Zhongyuan Univ Technol, Sch Civil Engn, Zhengzhou, Peoples R China
基金
澳大利亚研究理事会;
关键词
Mixed mode fracture; J-integral; Steel; Digital image correlation; Fracture initiation; STRESS INTENSITY FACTORS; DUCTILE FRACTURE; TOUGHNESS; BEHAVIOR; CRACKS; INITIATION; TENSION;
D O I
10.1016/j.engfracmech.2021.108044
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The fracture resistance of elasto-plastic materials varies significantly depending on the mode mixities, i.e., the loading combinations. This paper aims to experimentally investigate the fracture resistance and behaviour of two grades of mild steel under various in-plane loading combinations. A loading fixture with high loading capacity and modified compact tension shear (CTS) specimen are designed to conduct fracture tests on elasto-plastic materials under various mode mixities. A digital image correlation (DIC) technique-based method is developed and verified to detect the fracture initiation. It is found in the paper that the sensitivity of the fracture resistance of steel to mode mixity is attributed to the strain hardening capacity and the impurities in chemical composition of the steel. It is also found that the plastic strain concentration, crack tip blunting and fracture mechanism lead to different fracture resistance of both types of steel under various mixed mode loading combinations. The contribution of the paper is that an additional method to determine the fracture initiation under non-mode I loading is developed. The test results show the necessity of considering the mode mixity effect under the mode II loading dominance in practical engineering applications.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Experimental Study on the Effect of Cyclic Heating and Water Cooling on Mixed-Mode I-II Fracture Characteristics of Sandstone
    Zhang, Wenyu
    Hua, Wen
    Zhou, Mao
    He, Fengfei
    Xu, Yaozhong
    Wang, Yunru
    Dong, Shiming
    Kuang, Jialin
    BUILDINGS, 2024, 14 (07)
  • [32] Interlaminar fracture characterization of woven glass/epoxy composites under mixed-mode II/III loading conditions at cryogenic temperatures
    Miura, Masaya
    Shindo, Yasuhide
    Takeda, Tomo
    Narita, Fumio
    ENGINEERING FRACTURE MECHANICS, 2012, 96 : 615 - 625
  • [33] Initiation of ductile fracture in mixed-mode I and II aluminum alloy specimens
    Qian, Xudong
    Yang, Wuchao
    ENGINEERING FRACTURE MECHANICS, 2012, 93 : 189 - 203
  • [34] The influence of cement proportion and curing age on the mixed mode I-II fracture characteristics of cement soil
    Liu, Tao
    Du, Tiantian
    Lu, Huaming
    Hu, Baichun
    Yang, Xun
    Liu, Gang
    FRONTIERS IN MATERIALS, 2024, 10
  • [35] Effect of loading rate on mixed mode I-II crack propagation in concrete
    Ma, Min-Hua
    Wu, Zhi-Min
    Zheng, Jian-Jun
    Wang, Yan-Jie
    Yu, Rena C.
    Fei, Xiao-Dong
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2021, 112
  • [36] Potential fracture configurations of a cracked solid under mixed mode-I/III loading
    Wang, L.
    Xie, Y. J.
    Yuan, H.
    ARCHIVE OF APPLIED MECHANICS, 2023, 93 (05) : 2033 - 2049
  • [37] Effect of coupled thermal-chemical on the mixed mode I-II fracture characteristic of sandstone
    Gan, Zhiqiang
    Hua, Wen
    Huang, Jiuzhou
    Huang, Lin
    Pan, Xin
    Dong, Shiming
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2022, 122
  • [38] Cracking mechanisms of a medium-grained granite under mixed-mode I-II loading illuminated by acoustic emission
    Guo, Tian Yang
    Wong, Louis Ngai Yuen
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2021, 145
  • [39] Bone fracture characterization under mixed-mode I plus II loading using the MMB test
    Pereira, F. A. M.
    de Moura, M. F. S. F.
    Dourado, N.
    Morais, J. J. L.
    Silva, F. G. A.
    Dias, M. I. R.
    ENGINEERING FRACTURE MECHANICS, 2016, 166 : 151 - 163
  • [40] Low temperature fracture toughness study for bitumen under mixed mode I plus II loading condition
    Aliha, M. R. M.
    Shaker, S.
    Keymanesh, M. R.
    ENGINEERING FRACTURE MECHANICS, 2019, 206 : 297 - 309