ESTIMATES THE UPPER BOUNDS OF DIRICHLET EIGENVALUES FOR FRACTIONAL LAPLACIAN

被引:2
作者
Chen, Hua [1 ]
Chen, Hong-ge [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Fractional Laplacian; Dirichlet eigenvalues; Riesz mean function; heat kernel; TRACE;
D O I
10.3934/dcds.2021117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega subset of R-n (n = 2) be a bounded domain with continuous boundary partial derivative Omega. In this paper, we study the Dirichlet eigenvalue problem of the fractional Laplacian which is restricted to Omega with 0 < s < 1. Denoting by lambda(k) the k(th) Dirichlet eigenvalue of (-Delta)(s)vertical bar Omega, we establish the explicit upper bounds of the ratio lambda(k+1)/lambda(1), which have polynomially growth in k with optimal increase orders. Furthermore, we give the explicit lower bounds for the Riesz mean function R-sigma(z) = Sigma(k)(z -lambda(k))(sigma) + with sigma >= 1 and the trace of the Dirichlet heat kernel of fractional Laplacian.
引用
收藏
页码:301 / 317
页数:17
相关论文
共 29 条
[1]   Trace estimates for stable processes [J].
Banuelos, Rodrigo ;
Kulczycki, Tadeusz .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 142 (3-4) :313-338
[2]   On the trace of symmetric stable processes on Lipschitz domains [J].
Banuelos, Rodrigo ;
Kulczycki, Tadeusz ;
Siudeja, Bartlomiej .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (10) :3329-3352
[3]  
Berezin F. A., 1972, MATH USSR IZV, V36, P1134
[4]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[5]  
Blumenthal RM., 1959, PAC J MATH, V9, P399
[6]   The fractional Cheeger problem [J].
Brasco, L. ;
Lindgren, E. ;
Parini, E. .
INTERFACES AND FREE BOUNDARIES, 2014, 16 (03) :419-458
[7]   The second eigenvalue of the fractional p-Laplacian [J].
Brasco, Lorenzo ;
Parini, Enea .
ADVANCES IN CALCULUS OF VARIATIONS, 2016, 9 (04) :323-355
[8]   Universal inequality and upper bounds of eigenvalues for non-integer poly-Laplacian on a bounded domain [J].
Chen, Hua ;
Zeng, Ao .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (05)
[9]   Two-sided eigenvalue estimates for subordinate processes in domains [J].
Chen, ZQ ;
Song, RM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 226 (01) :90-113
[10]   Bounds on eigenvalues of Dirichlet Laplacian [J].
Cheng, Qing-Ming ;
Yang, Hongcang .
MATHEMATISCHE ANNALEN, 2007, 337 (01) :159-175