Existence and properties of inverse mappings

被引:23
作者
Arutyunov, A. V. [1 ]
Zhukovskiy, S. E. [2 ]
机构
[1] Peoples Friendship Univ Russia, Moscow 117198, Russia
[2] Russian Acad Sci, Vladikavkaz Res Ctr, So Math Inst, Vladikavkaz 362027, Russia
基金
俄罗斯基础研究基金会;
关键词
SINGULAR POINT; NEIGHBORHOOD; MAPS;
D O I
10.1134/S0081543810040036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlinear mappings in Banach spaces are considered. The covering property, metric regularity, and the existence of a continuous right inverse are considered for these mappings under various assumptions of smoothness. Several regularity conditions that guarantee the local covering property and the existence of a continuous right inverse are presented.
引用
收藏
页码:12 / 22
页数:11
相关论文
共 16 条
[1]  
Arutyunov A.V., 2000, Optimality condition: abnormal and degenerate problems
[2]   Locally covering maps in metric spaces and coincidence points [J].
Arutyunov, Aram ;
Avakov, Evgeniy ;
Gel'man, Boris ;
Dmitruk, Andrei ;
Obukhovskii, Valeri .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2009, 5 (01) :105-127
[3]   Implicit function theorem as a realization of the Lagrange principle. Abnormal points [J].
Arutyunov, AV .
SBORNIK MATHEMATICS, 2000, 191 (1-2) :1-24
[5]   Implicit function theorem without a priori assumptions about normality [J].
Arutyunov A.V. .
Computational Mathematics and Mathematical Physics, 2006, 46 (2) :195-205
[6]  
ARUTYUNOV AV, 2006, PONTRYAGINS MAXIMUM
[7]   THEOREMS ON ESTIMATES IN THE NEIGHBORHOOD OF A SINGULAR POINT OF A MAPPING [J].
AVAKOV, ER .
MATHEMATICAL NOTES, 1990, 47 (5-6) :425-432
[8]   THE LEVEL SET OF A SMOOTH MAPPING IN A NEIGHBORHOOD OF A SINGULAR POINT, AND ZEROS OF A QUADRATIC MAPPING [J].
AVAKOV, ER ;
AGRACHEV, AA ;
ARUTYUNOV, AV .
MATHEMATICS OF THE USSR-SBORNIK, 1992, 73 (02) :455-466
[9]  
Clarke F.H, 1983, OPTIMIZATION NONSMOO
[10]  
Facchinei F., 2003, SPRING S OPERAT RES, VI