A micropolar peridynamic theory in linear elasticity

被引:44
作者
Chowdhury, Shubhankar Roy [1 ]
Rahaman, Md. Masiur [1 ]
Roy, Debasish [1 ]
Sundaram, Narayan [1 ]
机构
[1] Indian Inst Sci, Dept Civil Engn, Bangalore 560012, Karnataka, India
关键词
Micropolar peridynamics; Length scales; Constitutive correspondence; Timoshenko-type beams; Plane stress problems; PROPAGATION; NONORDINARY; BEAMS;
D O I
10.1016/j.ijsolstr.2015.01.018
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A state-based micropolar peridynamic theory for linear elastic solids is proposed. The main motivation is to introduce additional micro-rotational degrees of freedom to each material point and thus naturally bring in the physically relevant material length scale parameters into peridynamics. Non-ordinary type modeling via constitutive correspondence is adopted here to define the micropolar peridynamic material. Along with a general three dimensional model, homogenized one dimensional Timoshenko type beam models for both the proposed micropolar and the standard non-polar peridynamic variants are derived. The efficacy of the proposed models in analyzing continua with length scale effects is established via numerical simulations of a few beam and plane-stress problems. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:171 / 182
页数:12
相关论文
共 24 条
  • [1] [Anonymous], INT J ENGNG SCI 2
  • [2] Analysis of three-dimensional crack initiation and propagation using the extended finite element method
    Areias, PMA
    Belytschko, T
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 63 (05) : 760 - 788
  • [3] Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO
  • [4] 2-S
  • [5] Quasi-automatic simulation of crack propagation for 2D LEFM problems
    Bittencourt, TN
    Wawrzynek, PA
    Ingraffea, AR
    Sousa, JL
    [J]. ENGINEERING FRACTURE MECHANICS, 1996, 55 (02) : 321 - 334
  • [6] Non-ordinary state-based peridynamic analysis of stationary crack problems
    Breitenfeld, M. S.
    Geubelle, P. H.
    Weckner, O.
    Silling, S. A.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 272 : 233 - 250
  • [7] Cosserat E., 1909, Theorie des corps deformables
  • [8] Eringen A.C., 1964, Internat. J. Engrg. Sci., V2, P189, DOI [DOI 10.1016/0020-7225(64)90004-7, 10.1016/0020-7225(64)90004-7]]
  • [9] Eringen A.C., 1976, Continuum Physics, P1
  • [10] Eringen AC., 1999, THEORY MICROPOLAR EL, P101, DOI DOI 10.1007/978-1-4612-0555-5_5