Abundance of Candidatus 'Accumulibacter phosphatis' in enhanced biological phosphorus removal activated sludge acclimatized with different carbon sources

被引:24
|
作者
Fukushima, Toshikazu
Uda, Naoki
Okamoto, Mayuko
Onuki, Motoharu
Satoh, Hiroyasu
Mino, Takashi
机构
[1] Univ Tokyo, Grad Sch Frontier Sci, Inst Environm Studies, Chiba 2778563, Japan
[2] Nishihara Environm Technol Inc, Minato Ku, Tokyo 1080023, Japan
[3] Univ Tokyo, Integrated Res Syst Sustainabil Sci, Bunkyo Ku, Tokyo 1138656, Japan
关键词
EBPR; PAOs; Candidatus 'Accumulibacter phosphatis'; carbon source; FISH;
D O I
10.1264/jsme2.22.346
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In the present study, the abundance of Candidatus 'Accumulibacter phosphatis' and the accumulation of polyphosphate were investigated in five enhanced biological phosphorus removal (EBPR) activated sludge reactors operated with different carbon sources. Fluorescence in situ hybridization (FISH) in combination with 4',6-diamidino-2-phenylindole (DAPI) staining for polyphosphate granules confirmed the accumulation of polyphosphate by Candidatus 'Accumulibacter phosphatis' in all the reactors. The abundance of Candidatus 'Accumulibacter phosphatis' was determined from the FISH images. When EBPR activity was high and phosphorus content made up around 9% or more of mixed liquor volatile suspended solids (MLVSS), Candidatus 'Accumulibacter phosphatis' accounted for over 20% of the eubacteria in the reactors acclimatized with acetate, aspartate, or glucose. Whereas this value was as low as around 10% in the reactors acclimatized mainly with yeast extract, peptone.. or glutamate. In these reactors, bacteria affiliated with Actinobacteria were found to accumulate polyphosphate and to contribute to phosphorus removal. Candidatus 'Accumulibacter phosphatis' takes part in the removal of phosphorus by using various carbon sources, but its abundance varies according to the type of carbon source.
引用
收藏
页码:346 / 354
页数:9
相关论文
共 50 条
  • [41] Enhanced biological phosphate removal from wastewater and clade-level population dynamics of "Candidatus Accumulibacter phosphatis" under free nitrous acid inhibition: Linked with detoxication
    Zeng, Wei
    Wang, Anqi
    Zhang, Jie
    Zhang, Limin
    Peng, Yongzhen
    CHEMICAL ENGINEERING JOURNAL, 2016, 296 : 234 - 242
  • [42] Metabolism of enhanced biological phosphorus removal and non-enhanced biological phosphorus removal sludge with acetate and glucose as carbon source
    Sudiana, IM
    Mino, T
    Satoh, H
    Nakamura, K
    Matsuo, T
    WATER SCIENCE AND TECHNOLOGY, 1999, 39 (06) : 29 - 35
  • [43] Metabolism of enhanced biological phosphorus removal and non-enhanced biological phosphorus removal sludge with acetate and glucose as carbon source
    Department of Urban Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 153, Japan
    不详
    Water Science and Technology, 39 (06): : 29 - 35
  • [44] Tetrasphaera, rather than Candidatus Accumulibacter as performance indicator of free ammonia inhibition during the enhanced biological phosphorus removal processes
    Sun, Hongwei
    Zhang, Xin
    Zhang, Feng
    Yang, Hao
    Lu, Jianbo
    Ge, Shijian
    Li, Xiaoqiang
    Zhang, Wei
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (05):
  • [45] Candidatus Thiothrix phosphatis SCUT-1: A novel polyphosphate-accumulating organism abundant in the enhanced biological phosphorus removal system
    Chen, Liping
    Deng, Xuhan
    Xie, Xiaojing
    Wang, Kaiying
    Chen, Hang
    Cen, Sheqi
    Huang, Fu
    Wang, Cenchao
    Li, Yaqian
    Wei, Chaohai
    Qiu, Guanglei
    WATER RESEARCH, 2024, 267
  • [46] Dynamic modelling of enhanced biological phosphorus and nitrogen removal in activated sludge systems
    Maurer, M
    Gujer, W
    WATER SCIENCE AND TECHNOLOGY, 1998, 38 (01) : 203 - 210
  • [47] Anaerobic uptake of glutamate and aspartate by enhanced biological phosphorus removal activated sludge
    Satoh, H
    Mino, T
    Matsuo, T
    WATER SCIENCE AND TECHNOLOGY, 1998, 37 (4-5) : 579 - 582
  • [48] Polyphosphate kinase from activated sludge performing enhanced biological phosphorus removal
    McMahon, KD
    Dojka, MA
    Pace, NR
    Jenkins, D
    Keasling, JD
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (10) : 4971 - 4978
  • [49] Behavior of waste activated sludge from enhanced biological phosphorus removal during sludge treatment
    Jardin, N
    Popel, HJ
    WATER ENVIRONMENT RESEARCH, 1996, 68 (06) : 965 - 973
  • [50] Biotransformation of phosphorus in enhanced biological phosphorus removal sludge biochar
    Qian, Tingting
    Lu, Dan
    Soh, Yan Ni Annie
    Webster, Richard D.
    Zhou, Yan
    Water Research, 2020, 169