Nonlinear dynamics of quadratic gravity in spherical symmetry

被引:12
作者
Held, Aaron [1 ]
Lim, Hyun [2 ,3 ,4 ]
机构
[1] Imperial Coll London, Blackett Lab, London SW7 2AZ, England
[2] Los Alamos Natl Lab, Computat Phys & Methods CCS 2, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, Ctr Theoret Astrophys, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, Appl Comp Sci CCS 7, Los Alamos, NM 87545 USA
关键词
GRAVITATIONAL COLLAPSE; SINGULARITIES; EVOLUTION; SYSTEMS; HYPERBOLICITY; RELATIVITY;
D O I
10.1103/PhysRevD.104.084075
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the first numerically stable nonlinear evolution for the leading-order gravitational effective field theory (quadratic gravity) in the spherically-symmetric sector. The formulation relies on (i) the harmonic gauge to cast the evolution system into quasilinear form (ii) the Cartoon method to reduce to spherical symimetry in keeping with the harmonic gauge, and (iii) order reduction to first order (in time) by means of introducing auxiliary variables. The well posedness of the respective initial-value problem is numerically confirmed by evolving randomly perturbed flat-space and black-hole initial data. Our study serves as a proof-of-principle for the possibility of stable numerical evolution in the presence of higher derivatives.
引用
收藏
页数:11
相关论文
共 69 条
  • [1] Abbott BP, 2019, PHYS REV LETT, V123, DOI [10.1103/PhysRevLett.123.011102, 10.1103/PhysRevLett.121.129902]
  • [2] GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run
    Abbott, R.
    Abbott, T. D.
    Abraham, S.
    Acernese, F.
    Ackley, K.
    Adams, A.
    Adams, C.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Akcay, S.
    Allen, G.
    Allocca, A.
    Altin, P. A.
    Amato, A.
    Anand, S.
    Ananyeva, A.
    Anderson, S. B.
    Anderson, W. G.
    Angelova, S., V
    Ansoldi, S.
    Antelis, J. M.
    Antier, S.
    Appert, S.
    Arai, K.
    Araya, M. C.
    Areeda, J. S.
    Arene, M.
    Arnaud, N.
    Aronson, S. M.
    Arun, K. G.
    Asali, Y.
    Ascenzi, S.
    Ashton, G.
    Aston, S. M.
    Astone, P.
    Aubin, F.
    Aufmuth, P.
    AultONeal, K.
    Austin, C.
    Avendano, V
    Babak, S.
    Badaracco, F.
    [J]. PHYSICAL REVIEW X, 2021, 11 (02)
  • [3] Symmetry without symmetry:: Numerical simulation of axisymmetric systems using Cartesian grids
    Alcubierre, M
    Brügmann, B
    Holz, D
    Takahashi, R
    Brandt, S
    Seidel, E
    Thornburg, J
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2001, 10 (03): : 273 - 289
  • [4] [Anonymous], 2017, INTRO COVARIANT QUAN
  • [5] The ultraviolet behavior of quantum gravity
    Anselmi, Damiano
    Piva, Marco
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (05):
  • [6] ASYMPTOTIC FREEDOM IN HIGHER-DERIVATIVE QUANTUM-GRAVITY
    AVRAMIDI, IG
    BARVINSKY, AO
    [J]. PHYSICS LETTERS B, 1985, 159 (4-6) : 269 - 274
  • [7] Implementation of standard testbeds for numerical relativity
    Babiuc, M. C.
    Husa, S.
    Alic, D.
    Hinder, I.
    Lechner, C.
    Schnetter, E.
    Szilagyi, B.
    Zlochower, Y.
    Dorband, N.
    Pollney, D.
    Winicour, J.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (12)
  • [8] Numerical integration of Einstein's field equations
    Baumgarte, TW
    Shapiro, SL
    [J]. PHYSICAL REVIEW D, 1999, 59 (02):
  • [9] On avoiding Ostrogradski instabilities within Asymptotic Safety
    Becker, Daniel
    Ripken, Chris
    Saueressig, Frank
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2017, (12):
  • [10] Bezares M., J COSMOL ASTROPART P, V03