High-dimensional orbital angular momentum entanglement from an ultrathin nonlinear film

被引:0
|
作者
Dai, Fan [1 ]
Huang, Shuang-Yin [1 ]
Wang, Min [1 ]
Tu, Chenghou [1 ]
Li, Yongnan [1 ]
Wang, Hui-Tian [2 ,3 ]
机构
[1] Nankai Univ, Sch Phys, Key Lab Weak Light Nonlinear Photon, Tianjin, Peoples R China
[2] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing, Peoples R China
来源
FRONTIERS IN PHYSICS | 2022年 / 10卷
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
orbital angular momentum; quantum entanglement; high-dimensional entanglement; nonlinear film; phase matching; GENERATION; STATES; MODES;
D O I
10.3389/fphy.2022.971360
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement, as a crucial feature of quantum systems, is essential for various applications of quantum technologies. High-dimensional entanglement has the potential to encode arbitrary large amount of information and enhance robustness against eavesdropping and quantum cloning. The orbital angular momentum (OAM) entanglement can achieve the high-dimensional entanglement nearly for free stems due to its discrete and theoretically infinite-dimensional Hilbert space. A stringent limitation, however, is that the phase-matching condition limits the entanglement dimension because the coincidence rate decreases significantly for high-order modes. Here we demonstrate relatively flat high-dimensional OAM entanglement based on a spontaneous parametric down conversion (SPDC) from an ultrathin nonlinear lithium niobite crystal. The difference of coincidences between the different-order OAM modes significantly decreases. To further enhance the nonlinear process, this microscale SPDC source will provide a promising and integrated method to generate optimal high-dimensional OAM entanglement.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] High-Dimensional Circular Quantum Secret Sharing Using Orbital Angular Momentum
    Tang, Dawei
    Wang, Tie-jun
    Mi, Sichen
    Geng, Xiao-Meng
    Wang, Chuan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (11) : 4963 - 4971
  • [12] High-Dimensional Entanglement of Photonic Angular Qudits
    Puentes, Graciana
    FRONTIERS IN PHYSICS, 2022, 10
  • [13] Propagation-invariant high-dimensional orbital angular momentum states
    Mao, Li-Wei
    Ding, Dong-Sheng
    Rosales-Guzman, Carmelo
    Zhu, Zhi-Han
    JOURNAL OF OPTICS, 2022, 24 (04)
  • [14] Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian modes
    Krenn, Mario
    Malik, Mehul
    Erhard, Manuel
    Zeilinger, Anton
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 375 (2087):
  • [15] Experimental demonstration of efficient high-dimensional quantum gates with orbital angular momentum
    Wang, Yunlong
    Ru, Shihao
    Wang, Feiran
    Zhang, Pei
    Li, Fuli
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (01)
  • [16] High-Dimensional Circular Quantum Secret Sharing Using Orbital Angular Momentum
    Dawei Tang
    Tie-jun Wang
    Sichen Mi
    Xiao-Meng Geng
    Chuan Wang
    International Journal of Theoretical Physics, 2016, 55 : 4963 - 4971
  • [17] Manipulating Orbital Angular Momentum Entanglement in Three-Dimensional Spiral Nonlinear Photonic Crystals
    Yu, Qian
    Xu, Chuan
    Chen, Sixin
    Chen, Pengcheng
    Nie, Saiwei
    Ke, Shijie
    Wei, Dunzhao
    Xiao, Min
    Zhang, Yong
    PHOTONICS, 2022, 9 (07)
  • [18] Path-orbital-angular-momentum high-dimensional hyperentangled photons from a warm atomic ensemble
    Hu, Qiwu
    Ren, Yuan
    Wang, Xutong
    Hu, Xiao-Min
    Jing, Jietai
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [19] Path identity as a source of high-dimensional entanglement
    Kysela, Jaroslav
    Erhard, Manuel
    Hochrainer, Armin
    Krenn, Mario
    Zeilinger, Anton
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (42) : 26118 - 26122
  • [20] Entanglement of polarization and orbital angular momentum
    Bhatti, D.
    von Zanthier, J.
    Agarwal, G. S.
    PHYSICAL REVIEW A, 2015, 91 (06):