A solution of a problem of Sophus Lie: normal forms of two-dimensional metrics admitting two projective vector fields

被引:52
作者
Bryant, Robert L.
Manno, Gianni
Matveev, Vladimir S. [1 ]
机构
[1] Math Inst, FSU Jena, D-07737 Jena, Germany
[2] Math Sci Res Inst, Berkeley, CA 94720 USA
[3] Dept Math, I-73100 Lecce, Italy
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00208-007-0158-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a complete list of normal forms for the two-dimensional metrics that admit a transitive Lie pseudogroup of geodesic-preserving transformations and we show that these normal forms are mutually non-isometric. This solves a problem posed by Sophus Lie.
引用
收藏
页码:437 / 463
页数:27
相关论文
共 38 条
[31]  
Solodovnikov A.S., 1956, USP MAT NAUK, V11, P45
[32]  
SOLODOVNIKOV AS, 1969, DOKL AKAD NAUK SSSR+, V186, P1262
[33]  
SOLODOVNIKOV AS, 1961, T SEM VEKTOR TENZOR, V11, P43
[34]  
SOLODOVNIKOV AS, 1963, T SEM VEKTOR TENZOR, V12, P131
[35]   Geodesic equivalence via integrability [J].
Topalov, P ;
Matveev, VS .
GEOMETRIAE DEDICATA, 2003, 96 (01) :91-115
[36]  
Topalov P, 2002, MATH RES LETT, V9, P65
[37]  
Tresse A., 1896, Determination des invariants ponctuels de l'equation differentielle ordinaire du second ordre
[38]  
Tresse A., 1894, ACTA MATH, V18, P1, DOI [10.1007/BF02418270, DOI 10.1007/BF02418270]