A solution of a problem of Sophus Lie: normal forms of two-dimensional metrics admitting two projective vector fields

被引:52
作者
Bryant, Robert L.
Manno, Gianni
Matveev, Vladimir S. [1 ]
机构
[1] Math Inst, FSU Jena, D-07737 Jena, Germany
[2] Math Sci Res Inst, Berkeley, CA 94720 USA
[3] Dept Math, I-73100 Lecce, Italy
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00208-007-0158-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a complete list of normal forms for the two-dimensional metrics that admit a transitive Lie pseudogroup of geodesic-preserving transformations and we show that these normal forms are mutually non-isometric. This solves a problem posed by Sophus Lie.
引用
收藏
页码:437 / 463
页数:27
相关论文
共 38 条
[1]  
AMINOVA AV, 1990, IZ VYSSH UCHEBN ZAVE, V6, P3
[2]  
AMINOVA AV, 2003, GEOMETRY, V113, P367
[3]  
[Anonymous], 1935, SOPHUS LIE GESAMMELT, V2, P267
[4]  
[Anonymous], DOKL MATH
[5]  
[Anonymous], AM J MATH
[6]  
BELTRAMI E, 1865, ANN MAT, V1, P185, DOI DOI 10.1007/BF03198517
[7]   Special symmetric two-tensors, equivalent dynamical systems, cofactor and bi-cofactor systems [J].
Benenti, S .
ACTA APPLICANDAE MATHEMATICAE, 2005, 87 (1-3) :33-91
[8]  
BRYANT RL, SOLUTION PROBLEM SOP
[9]  
Cartan E., 1924, Bulletin de la Societe Mathematique de France, V52, P205, DOI [10.24033/bsmf.1053, DOI 10.24033/BSMF.1053]
[10]  
DARBOUX G, 1972, LECONS THEORIE GEN S, V3