It is becoming increasingly clear that the products of incomplete combustion (soot and charcoal, collectively termed black carbon or BC) can be responsible for as much as 80-90 % of the total sorption to sediments of aromatic, planar, and hydrophobic compounds such as polycyclic aromatic hydrocarbons or planar polychlorinated biphenyls. In the present study, it was investigated whether a nonpolar aliphatic compound (hexachloroethane) and three nonplanar bipolar compounds with different functional groups [free electron pairs but no aromatic ring (butylate) or free electron pairs and an aromatic ring (diuron, atrazine)] would also show strong and nonlinear sorption to a BC-enriched sediment. At a concentration of 1 ng/L, the extent of elevated BC sorption compared to total organic carbon (TOC) sorption increased in the order atrazine < hexachloroethane < butylate < diuron. Rationalization of the differences between the sorbates was attempted in terms of dispersive and steric effects. This study shows that the effects of strong BC sorption apply to a broader range of organic contaminants than previously thought, and the results will aid in a better understanding of BC sorption mechanisms and improved fate modeling of contaminants in the environment.