Noisy Labels are Treasure: Mean-Teacher-Assisted Confident Learning for Hepatic Vessel Segmentation

被引:44
作者
Xu, Zhe [1 ,3 ]
Lu, Donghuan [2 ]
Wang, Yixin [4 ]
Luo, Jie [3 ]
Jayender, Jagadeesan [3 ]
Ma, Kai [2 ]
Zheng, Yefeng [2 ]
Li, Xiu [1 ]
机构
[1] Tsinghua Univ, Shenzhen Int Grad Sch, Shenzhen, Peoples R China
[2] Tencent Jarvis Lab, Shenzhen, Peoples R China
[3] Harvard Med Sch, Brigham & Womens Hosp, Boston, MA 02115 USA
[4] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT I | 2021年 / 12901卷
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Hepatic vessel; Noisy label; Confident learning; NETWORK;
D O I
10.1007/978-3-030-87193-2_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Manually segmenting the hepatic vessels from Computer Tomography (CT) is far more expertise-demanding and laborious than other structures due to the low-contrast and complex morphology of vessels, resulting in the extreme lack of high-quality labeled data. Without sufficient high-quality annotations, the usual data-driven learning-based approaches struggle with deficient training. On the other hand, directly introducing additional data with low-quality annotations may confuse the network, leading to undesirable performance degradation. To address this issue, we propose a novel mean-teacher-assisted confident learning framework to robustly exploit the noisy labeled data for the challenging hepatic vessel segmentation task. Specifically, with the adapted confident learning assisted by a third party, i.e., the weight-averaged teacher model, the noisy labels in the additional low-quality dataset can be transformed from 'encumbrance' to 'treasure' via progressive pixel-wise soft-correction, thus providing productive guidance. Extensive experiments using two public datasets demonstrate the superiority of the proposed framework as well as the effectiveness of each component.
引用
收藏
页码:3 / 13
页数:11
相关论文
共 27 条
[1]   Sparse Label Smoothing Regularization for Person Re-Identification [J].
Ainam, Jean-Paul ;
Qin, Ke ;
Liu, Guisong ;
Luo, Guangchun .
IEEE ACCESS, 2019, 7 :27899-27910
[2]  
Angluin D., 1988, Machine Learning, V2, P343, DOI 10.1023/A:1022873112823
[3]   Semi-supervised Brain Lesion Segmentation with an Adapted Mean Teacher Model [J].
Cui, Wenhui ;
Liu, Yanlin ;
Li, Yuxing ;
Guo, Menghao ;
Li, Yiming ;
Li, Xiuli ;
Wang, Tianle ;
Zeng, Xiangzhu ;
Ye, Chuyang .
INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2019, 2019, 11492 :554-565
[4]   Electronic Noise in CT Detectors: Impact on Image Noise and Artifacts [J].
Duan, Xinhui ;
Wang, Jia ;
Leng, Shuai ;
Schmidt, Bernhard ;
Allmendinger, Thomas ;
Grant, Katharine ;
Flohr, Thomas ;
McCollough, Cynthia H. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2013, 201 (04) :W626-W632
[5]  
Goldberger Jacob, 2016, INT C LEARN REPR
[6]   Robust liver vessel extraction using 3D U Net with variant dice loss function [J].
Huang, Qing ;
Sun, Jinfeng ;
Ding, Hui ;
Wang, Xiaodong ;
Wang, Guangzhi .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 101 :153-162
[7]   DUNet: A deformable network for retinal vessel segmentation [J].
Jin, Qiangguo ;
Meng, Zhaopeng ;
Tuan D Pham ;
Chen, Qi ;
Wei, Leyi ;
Su, Ran .
KNOWLEDGE-BASED SYSTEMS, 2019, 178 :149-162
[8]  
Kervadec H, 2019, PR MACH LEARN RES, V102, P285
[9]   VesselNet: A deep convolutional neural network with multi pathways for robust hepatic vessel segmentation [J].
Kitrungrotsakul, Titinunt ;
Han, Xian-Hua ;
Iwamoto, Yutaro ;
Lin, Lanfen ;
Foruzan, Amir Hossein ;
Xiong, Wei ;
Chen, Yen-Wei .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 75 :74-83
[10]   Robust Hepatic Vessel Segmentation using Multi Deep Convolution Network [J].
Kitrungrotsakul, Titinunt ;
Han, Xian-Hua ;
Iwamoto, Yutaro ;
Foruzan, Amir Hossein ;
Lino, Lanfen ;
Chen, Yen-Wei .
MEDICAL IMAGING 2017: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2017, 10137