Blow up of solutions for a Parabolic-Elliptic chemotaxis system with gradient dependent chemotactic coefficient

被引:29
作者
Ignacio Tello, J. [1 ]
机构
[1] Univ Nacl Educ Distancia, Dept Matemat Fundamentales, Fac Ciencias, Madrid 28040, Spain
关键词
Blow up of solutions; chemotaxis; comparison principle; MODELS;
D O I
10.1080/03605302.2021.1975132
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Parabolic-Elliptic system of PDE's with a chemotactic term in a N-dimensional unit ball describing the behavior of the density of a biological species "u" and a chemical stimulus "v." The system includes a nonlinear chemotactic coefficient depending of "del v," i.e. the chemotactic term is given in the form -div(chi u vertical bar del v|(p-2) del v), for p is an element of(N/N-1,2), N > 2 for a positive constant chi when v satisfies the poisson equation -Delta v = u - 1/vertical bar Omega vertical bar integral(Omega)u(0)dx. We study the radially symmetric solutions under the assumption in the initial mass 1/vertical bar Omega vertical bar integral(Omega)u(0)dx > 6. For chi large enough, we present conditions in the initial data, such that any regular solution of the problem blows up at finite time.
引用
收藏
页码:307 / 345
页数:39
相关论文
共 26 条
[1]  
Adams R.A., 2003, Sobolev spaces
[2]   Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues [J].
Bellomo, N. ;
Bellouquid, A. ;
Tao, Y. ;
Winkler, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) :1663-1763
[3]  
Bellomo N., 2017, T AM MATH SOC SER B, V4, P31, DOI DOI 10.1090/BTRAN/17
[4]   A degenerate chemotaxis system with flux limitation: Maximally extended solutions and absence of gradient blow-up [J].
Bellomo, Nicola ;
Winkler, Michael .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (03) :436-473
[5]   MULTISCALE BIOLOGICAL TISSUE MODELS AND FLUX-LIMITED CHEMOTAXIS FOR MULTICELLULAR GROWING SYSTEMS [J].
Bellomo, Nicola ;
Bellouquid, Abdelghani ;
Nieto, Juan ;
Soler, Juan .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (07) :1179-1207
[6]   Spatio-temporal Models of Lymphangiogenesis in Wound Healing [J].
Bianchi, Arianna ;
Painter, Kevin J. ;
Sherratt, Jonathan A. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2016, 78 (09) :1904-1941
[7]   A mathematical model for lymphangiogenesis in normal and diabetic wounds [J].
Bianchi, Arianna ;
Painter, Kevin J. ;
Sherratt, Jonathan A. .
JOURNAL OF THEORETICAL BIOLOGY, 2015, 383 :61-86
[8]   Finite-Time Blow-up in a Quasilinear Degenerate Chemotaxis System with Flux Limitation [J].
Chiyoda, Yuka ;
Mizukami, Masaaki ;
Yokota, Tomomi .
ACTA APPLICANDAE MATHEMATICAE, 2020, 167 (01) :231-259
[9]   Sobolev spaces of symmetric functions and applications [J].
de Figueiredo, Djairo Guedes ;
dos Santos, Ederson Moreira ;
Miyagaki, Olimpio Hiroshi .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (12) :3735-3770
[10]   A user's guide to PDE models for chemotaxis [J].
Hillen, T. ;
Painter, K. J. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (1-2) :183-217