LiMn2O4 nanorod arrays: A potential three-dimensional cathode for lithium-ion microbatteries

被引:19
作者
Tang, Xiao [1 ,2 ]
Lin, Binghui [1 ,2 ]
Ge, Yong [1 ]
Ge, Yao [1 ]
Lu, Changjie [1 ]
Savilov, Serguei V. [3 ]
Aldoshin, Serguei M. [4 ]
Xia, Hui [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Herbert Gleiter Inst Nanosci, Nanjing 210094, Jiangsu, Peoples R China
[3] Moscow MV Lomonosov State Univ, Dept Chem, Moscow 119991, Russia
[4] Moscow MV Lomonosov State Univ, Dept Phys Chem Engn, Moscow 119991, Russia
基金
中国国家自然科学基金; 中国博士后科学基金; 俄罗斯科学基金会;
关键词
Nanostructures; Chemical synthesis; Electrochemical measurements; Electrochemical properties; Energy storage; RATE CAPABILITY; BATTERIES; STORAGE;
D O I
10.1016/j.materresbull.2014.11.020
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Although three-dimensional (3D) microbatteries represent great advantage compared to their two-dimensional counterparts, the fabrication of 3D cathode is still a challenge, which holds back the further development of 3D microbatteries. In this work, we present a novel approach for fabrication of LiMn2O4 nanorod arrays as 3D cathode for microbatteries. alpha-MnO2 nanotube arrays are firstly grown on the Pt substrate as the template, and LiMn2O4 nanorod arrays are then prepared by lithiation of alpha-MnO2 nanotube arrays in molten salt followed by 800 degrees C annealing in air. In the half cell test, the 3D LiMn2O4 nanorod arrays exhibit both high gravimetric capacity (similar to 130 mAh g(-1)) and areal capacity (similar to 0.25 mAh cm(-2)), while maintaining good cycling stability and rate capability. The facile synthesis and superior electrochemical performance of the three-dimensional LiMn2O4 cathode make it promising for application in microbatteries. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2 / 6
页数:5
相关论文
共 20 条
[1]   Three-dimensional electrodes and battery architectures [J].
Arthur, Timothy S. ;
Bates, Daniel J. ;
Cirigliano, Nicolas ;
Johnson, Derek C. ;
Malati, Peter ;
Mosby, James M. ;
Perre, Emilie ;
Rawls, Matthew T. ;
Prieto, Amy L. ;
Dunn, Bruce .
MRS BULLETIN, 2011, 36 (07) :523-531
[2]   LiMn2O4-based materials as anodes for lithium-ion battery [J].
Chen, Kunfeng ;
Donahoe, Ailaura C. ;
Noh, Young Dong ;
Komarneni, Sridhar ;
Xue, Dongfeng .
FUNCTIONAL MATERIALS LETTERS, 2014, 7 (01)
[3]   Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries [J].
Cheng, Fangyi ;
Wang, Hongbo ;
Zhu, Zhiqiang ;
Wang, Yan ;
Zhang, Tianran ;
Tao, Zhanliang ;
Chen, Jun .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3668-3675
[4]   Single-Crystalline LiMn2O4 Nanotubes Synthesized Via Template-Engaged Reaction as Cathodes for High-Power Lithium Ion Batteries [J].
Ding, Yuan-Li ;
Xie, Jian ;
Cao, Gao-Shao ;
Zhu, Tie-Jun ;
Yu, Hong-Ming ;
Zhao, Xin-Bing .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (02) :348-355
[5]  
Dunn B., 2008, INTERFACE, V17, P49
[6]   ELECTROCHEMICAL PROPERTY OF LiMn2O4 IN OVER-DISCHARGED CONDITIONS [J].
Feng, Jinkui ;
Song, Bohang ;
Lai, Man On ;
Lu, Li ;
Zeng, Xianting ;
Huang, Zhaohong .
FUNCTIONAL MATERIALS LETTERS, 2012, 5 (03)
[7]   Synthesis of Single Crystalline Spinel LiMn2O4 Nanowires for a Lithium Ion Battery with High Power Density [J].
Hosono, Eiji ;
Kudo, Totsuichi ;
Honma, Itaru ;
Matsuda, Hirofumi ;
Zhou, Haoshen .
NANO LETTERS, 2009, 9 (03) :1045-1051
[8]  
Jan S. Savut, 2014, J NANOSCI NANOTECHNO
[9]   Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage [J].
Jiang, Jian ;
Li, Yuanyuan ;
Liu, Jinping ;
Huang, Xintang ;
Yuan, Changzhou ;
Lou, Xiong Wen .
ADVANCED MATERIALS, 2012, 24 (38) :5166-5180
[10]   LiMn2O4 nanoparticles anchored on graphene nanosheets as high-performance cathode material for lithium-ion batteries [J].
Lin, Binghui ;
Yin, Qing ;
Hu, Hengrun ;
Lu, Fujia ;
Xia, Hui .
JOURNAL OF SOLID STATE CHEMISTRY, 2014, 209 :23-28