SEGREGATED VECTOR SOLUTIONS FOR NONLINEAR SCHRODINGER SYSTEMS IN R2

被引:5
作者
Wang, Chunhua [1 ]
Xie, Dingyi [1 ]
Zhan, Liping [1 ]
Zhang, Lipan [1 ]
Zhao, Liangpei [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
关键词
Segregated vector solutions; nonlinear Schrodinger systems; POSITIVE SOLUTIONS; STRONG COMPETITION; BOUND-STATES; EQUATIONS; SOLITARY;
D O I
10.1016/S0252-9602(15)60010-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the following nonlinear Schrodinger system {-Delta u + P(vertical bar X vertical bar)u = mu u(3) + beta v(2)u, x is an element of R-2, -Delta v + Q(vertical bar X vertical bar)v = nu v(3) + beta u(2)v, x is an element of R-2, where P(r) and Q(r) are positive radial functions, mu > 0, nu > 0, and beta is an element of R is a coupling constant. This type of system arises, particularly, in models in Bose-Einstein condensates theory. Applying a finite reduction method, we construct an unbounded sequence of non-radial positive vector solutions of segregated type when beta is in some suitable interval, which gives an answer to an interesting problem raised by Peng and Wang in Remark 4.1 (Arch. Ration. Mech. Anal., 208(2013), 305-339).
引用
收藏
页码:383 / 398
页数:16
相关论文
共 24 条
[1]   Bound and ground states of coupled nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Colorado, E .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (07) :453-458
[2]   A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system [J].
Bartsch, Thomas ;
Dancer, E. Norman ;
Wang, Zhi-Qiang .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (3-4) :345-361
[3]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[4]   Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates [J].
Chang, SM ;
Lin, CS ;
Lin, TC ;
Lin, WW .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 196 (3-4) :341-361
[5]   Nehari's problem and competing species systems [J].
Conti, M ;
Terracini, S ;
Verzini, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2002, 19 (06) :871-888
[6]   A priori bounds versus multiple existence of positive solutions for a nonlinear Schrodinger system [J].
Dancer, E. N. ;
Wei, Juncheng ;
Weth, Tobias .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (03) :953-969
[7]   Solitary waves for some nonlinear Schrodinger systems [J].
de Figueiredo, Djairo G. ;
Lopes, Orlando .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (01) :149-161
[8]   Infinitely many solutions for nonlinear Schrodinger equations with electromagnetic fields [J].
Li, Gongbao ;
Peng, Shuangjie ;
Wang, Chunhua .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (12) :3500-3521
[9]   INFINITELY MANY POSITIVE SOLUTIONS FOR THE NONLINEAR SCHRODINGER POISSON SYSTEM [J].
Li, Gongbao ;
Peng, Shuangjie ;
Yan, Shusen .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2010, 12 (06) :1069-1092
[10]   Solitary and self-similar solutions of two-component system of nonlinear Schrodinger equations [J].
Lin, Tai-Chia ;
Wei, Juncheng .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 220 (02) :99-115