Monitoring the Fate and Transformation of Silver Nanoparticles in Natural Waters

被引:29
作者
Furtado, Lindsay M. [1 ]
Bundschuh, Mirco [2 ]
Metcalfe, Chris D. [1 ]
机构
[1] Trent Univ, Water Qual Ctr, Peterborough, ON, Canada
[2] Swedish Univ Agr Sci, Dept Aquat Sci & Assessment, Uppsala, Sweden
关键词
Nanosilver; Analysis; Fate; Nanoparticles; CLOUD POINT EXTRACTION; FIELD-FLOW FRACTIONATION; PARTICLE ICP-MS; ENGINEERED NANOMATERIALS; AGGREGATION KINETICS; WASTE-WATER; DISSOLUTION; TOXICITY; RELEASE; PERSISTENCE;
D O I
10.1007/s00128-016-1888-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
There is potential for silver nanoparticles (AgNPs) to be released into surface waters and thus affect aquatic organisms. However, agglomeration, dissolution, surface modifications and chemical speciation are important transformation processes that control the toxicity of AgNPs. Analytical methods are needed to determine the size distribution, mass and form of AgNPs and other silver species in natural waters. Cloud point extraction, single particle inductively coupled plasma mass spectrometry (spICP-MS) and asymmetric flow field flow fractionation with on-line ICP-MS (AF4-ICP-MS) are analytical techniques that show potential for quantitative analysis of AgNPs in aquatic matrices at environmentally relevant concentrations. In this review, we discuss the fate processes for AgNPs in natural waters and the analytical methods that can be used to determine the distribution of AgNPs and their transformation products.
引用
收藏
页码:449 / 455
页数:7
相关论文
共 57 条
[1]   Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: A critical review [J].
Baalousha, M. ;
Stolpe, B. ;
Lead, J. R. .
JOURNAL OF CHROMATOGRAPHY A, 2011, 1218 (27) :4078-4103
[2]   Metal sulfides in oxygenated aquatic systems: implications for the biotic ligand model [J].
Bianchini, A ;
Bowles, KC .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY C-TOXICOLOGY & PHARMACOLOGY, 2002, 133 (1-2) :51-64
[3]   Estimation of cumulative aquatic exposure and risk due to silver:: Contribution of nano-functionalized plastics and textiles [J].
Blaser, Sabine A. ;
Scheringer, Martin ;
MacLeod, Matthew ;
Hungerbuehler, Konrad .
SCIENCE OF THE TOTAL ENVIRONMENT, 2008, 390 (2-3) :396-409
[4]   Speciation Analysis of Silver Nanoparticles and Silver Ions in Antibacterial Products and Environmental Waters via Cloud Point Extraction-Based Separation [J].
Chao, Jing-bo ;
Liu, Jing-fu ;
Yu, Su-juan ;
Feng, Ying-di ;
Tan, Zhi-qiang ;
Liu, Rui ;
Yin, Yong-guang .
ANALYTICAL CHEMISTRY, 2011, 83 (17) :6875-6882
[5]   Role of sulfide and ligand strength in controlling nanosilver toxicity [J].
Choi, Okkyoung ;
Cleuenger, Thomas E. ;
Deng, Baolin ;
Surampalli, Rao Y. ;
Ross, Louis, Jr. ;
Hu, Zhiqiang .
WATER RESEARCH, 2009, 43 (07) :1879-1886
[6]   A signal deconvolution method to discriminate smaller nanoparticles in single particle ICP-MS [J].
Cornelis, Geert ;
Hassellov, Martin .
JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2014, 29 (01) :134-144
[7]   Biological Surface Coating and Molting Inhibition as Mechanisms of TiO2 Nanoparticle Toxicity in Daphnia magna [J].
Dabrunz, Andre ;
Duester, Lars ;
Prasse, Carsten ;
Seitz, Frank ;
Rosenfeldt, Ricki ;
Schilde, Carsten ;
Schaumann, Gabriele E. ;
Schulz, Ralf .
PLOS ONE, 2011, 6 (05)
[8]   Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode [J].
Degueldre, C ;
Favarger, PY ;
Wold, S .
ANALYTICA CHIMICA ACTA, 2006, 555 (02) :263-268
[9]   Silver Release from Silver Nanoparticles in Natural Waters [J].
Dobias, J. ;
Bernier-Latmani, R. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (09) :4140-4146
[10]   Acute and sub-lethal effects in juvenile Atlantic salmon exposed to low μg/L concentrations of Ag nanoparticles [J].
Farmen, E. ;
Mikkelsen, H. N. ;
Evensen, O. ;
Einset, J. ;
Heier, L. S. ;
Rosseland, B. O. ;
Salbu, B. ;
Tollefsen, K. E. ;
Oughton, D. H. .
AQUATIC TOXICOLOGY, 2012, 108 :78-84