Moduli stacks of stable toric quasimaps

被引:56
作者
Ciocan-Fontanine, Ionut [1 ,2 ]
Kim, Bumsig [2 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Korea Inst Adv Study, Sch Math, Seoul 130722, South Korea
关键词
Gromov-Witten invariants; Moduli spaces; Quasimap; Toric variety; CURVES;
D O I
10.1016/j.aim.2010.05.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct new "virtually smooth" modular compactifications of spaces of maps from nonsingular curves to smooth projective toric varieties. They generalize Givental's compactifications, when the complex structure of the curve is allowed to vary and markings are included, and are the tonic counterpart of the moduli spaces of stable quotients introduced by Marian, Oprea, and Pandharipande to compactify spaces of maps to Grassmannians. A brief discussion of the resulting invariants and their (conjectural) relation with Gromov-Witten theory is also included. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:3022 / 3051
页数:30
相关论文
共 23 条
[1]  
[Anonymous], 1998, Progr. Math., V160, P141
[2]  
[Anonymous], 2004, FROBENIUS MANIFOLDS, VE36, P91
[3]   The intrinsic normal cone [J].
Behrend, K ;
Fantechi, B .
INVENTIONES MATHEMATICAE, 1997, 128 (01) :45-88
[4]   Another way to enumerate rational curves with torus actions [J].
Bertram, A .
INVENTIONES MATHEMATICAE, 2000, 142 (03) :487-512
[5]  
Brown J., ARXIV09011290
[6]  
CIOCANFONTANINE I, STABLE QUASIMA UNPUB
[7]   Quantum Riemann-Roch, Lefschetz and Serre [J].
Coates, Tom ;
Givental, Alexander .
ANNALS OF MATHEMATICS, 2007, 165 (01) :15-53
[8]  
Cox D. A., 1995, J ALGEBRAIC GEOM, V4, P17
[9]   THE FUNCTOR OF A SMOOTH TORIC VARIETY [J].
COX, DA .
TOHOKU MATHEMATICAL JOURNAL, 1995, 47 (02) :251-262
[10]  
Deligne P., 1969, PUBL MATH-PARIS, V36, P75, DOI 10.1007/BF02684599