共 32 条
Probing the role of compartmentation of glycolysis in procyclic form Trypanosoma brucei RNA interference studies of PEX14, hexokinase, and phosphofructokinase
被引:42
作者:
Kessler, PS
Parsons, M
机构:
[1] Seattle Biomed Res Inst, Seattle, WA 98109 USA
[2] Univ Washington, Sch Publ Hlth & Community Med, Dept Pathobiol, Seattle, WA 98195 USA
关键词:
D O I:
10.1074/jbc.M412033200
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Trypanosoma brucei and related organisms contain an organelle evolutionarily related to peroxisomes that sequesters glycolysis, among other pathways. We have shown previously that disruption of protein import into this organelle, the glycosome, can be accomplished through RNA interference (RNAi)-mediated knockdown of the peroxin PEX14. Decreased PEX14 in turn leads to cell death, which, at least in the procyclic stage, can be triggered by the presence of glucose. Here we show that fructose, which is taken up and metabolized by procyclic form T. brucei, and glycerol, which interfaces with the glycosomal glycolytic pathway, are also toxic during PEX14 RNAi. Earlier computer modeling studies predicted that glycolysis would be toxic to T. brucei in the absence of glycosomal compartmentation because of the intrinsic lack of feedback regulation of the parasite hexokinase and phosphofructokinase. To further test this hypothesis, we performed double RNAi, targeting hexokinase and PEX14. Knockdown of hexokinase rescued PEX14 knockdown cells from glucose toxicity, even though glycosomal proteins continue to be mislocalized to the cytosol. Knockdown of phosphofructokinase was benign in the absence of glucose but toxic in the presence of glucose. When PEX14 and phosphofructokinase mRNAs were jointly targeted for RNAi, glycerol remained toxic to the parasites. Taken together, these data indicate that the glycosome provides significant, but not complete, protection of trypanosomes from the dangerous design of glycolysis.
引用
收藏
页码:9030 / 9036
页数:7
相关论文