Comparison of solid oxide fuel cell (SOFC) electrolyte materials for operation at 500 °C

被引:122
作者
Zhang, Jun [1 ]
Lenser, Christian [1 ]
Menzler, Norbert H. [1 ]
Guillon, Olivier [1 ,2 ]
机构
[1] Forschungszentrum Julich, Inst Energy & Climate Res, Mat Synth & Proc IEK 1, Julich, Germany
[2] JARA Energy, D-52425 Julich, Germany
关键词
IONIC-CONDUCTIVITY; ELECTRICAL-PROPERTIES; DIELECTRIC-RELAXATION; TEMPERATURE; ZIRCONIA; INTERMEDIATE; MICROSTRUCTURE; PERFORMANCE; SC2O3; SM;
D O I
10.1016/j.ssi.2019.115138
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid oxide fuel cells (SOFCs) operating at low temperature (similar to 500 degrees C) enable new fields of application, such as auxiliary power units (APUs) or power generation for mobile applications. However, the state-of-the-art electrolyte material currently used in intermediate-temperature SOFCs (yttria-stabilized zirconia (YSZ)) does not provide sufficiently high ionic conductivity for low temperature applications. When looking for alternatives, the conductivity values for each material found in widely cited literature can be confusing, as the reported values are sometimes in conflict with each other. Therefore, we present a systematic comparison of the conductivity of the three most popular, commercially available electrolyte materials, i.e., YSZ, scandia-stabilized zirconia (ScSZ), and gadolinium-doped ceria (GDC). By using electrochemical impedance spectroscopy (EIS) to characterize the ionic conductivities, we find that at 500 degrees C, GDC has a higher ionic conductivity (5.8 x 10(-3) S cm(-1)) than ScSZ (2.5 x 10(-3) S cm(-1) ) and YSZ (1.1 x 10(-3) S cm(-1)). The properties of the starting powders, powder processing and the microstructure after sintering were considered. This conductivity comparison can be used as a guide when deciding on electrolyte materials for different SOFC applications, especially when the fabrication of different thickness of the electrolyte layer has to be considered and rectify misleading information in the literature.
引用
收藏
页数:10
相关论文
共 50 条
[21]   Proton-conducting solid oxide fuel cell (SOFC) with Y-doped BaZrO3 electrolyte [J].
Bi, Lei ;
Da'as, Eman Husni ;
Shafi, Shahid P. .
ELECTROCHEMISTRY COMMUNICATIONS, 2017, 80 :20-23
[22]   Design concept of co-ionic conducting solid oxide electrolyte for stable operation in a cell-imbalanced fuel cell stack [J].
Niaz, Atif Khan ;
Kim, Young Je ;
Virkar, Anil V. ;
Park, Jun-Young ;
Lim, Hyung-Tae .
JOURNAL OF POWER SOURCES, 2021, 512
[23]   Modeling solid oxide fuel cell operation: Approaches, techniques and results [J].
Bove, Roberto ;
Ubertini, Stefano .
JOURNAL OF POWER SOURCES, 2006, 159 (01) :543-559
[24]   Synthesis and Characterization of LSGM Solid Electrolyte for Solid Oxide Fuel Cell [J].
Seong, Young-Hoon ;
Jo, Seung Hwan ;
Muralidharan, P. ;
Kim, Do Kyung .
JOURNAL OF THE KOREAN CERAMIC SOCIETY, 2007, 44 (12) :696-702
[25]   An FeNbO4-based oxide anode for a solid oxide fuel cell (SOFC) [J].
Liu, Xiaojing ;
Xie, Deti ;
Irvine, John T. S. ;
Ni, Jiupai ;
Ni, Chengsheng .
ELECTROCHIMICA ACTA, 2020, 335
[26]   Spin-coating derived solid oxide fuel cells operated at temperatures of 500 °C and below [J].
Zhang, Lei ;
Chen, Fanglin ;
Xia, Changrong .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (24) :13262-13270
[27]   Performance analysis of a planar solid oxide fuel cell stack between 750 °C and 500 °C [J].
Lenser, Christian ;
Zurek, Joanna ;
Naumenko, Dmitry ;
Thieu, Cam-Anh ;
Son, Ji-Won ;
de Haart, Ute ;
Fang, Qingping ;
Blum, Ludger ;
Menzler, Norbert H. .
JOURNAL OF POWER SOURCES, 2020, 474
[28]   Advances in solid oxide fuel cell electrolyte fabrication by pulsed laser deposition [J].
Tang, Mengjun ;
Niu, Yinghua ;
Muhammad, Waqas ;
Muhammad, Saeed ;
Zhong, Zhuohang ;
Muhammad, Sohail ;
Pang, Yashuai ;
Wan, Zhao ;
Chen, Ning ;
Qiao, Liang ;
Lv, Weiqiang .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 :618-632
[29]   Record-low sintering-temperature (600 °C) of solid-oxide fuel cell electrolyte [J].
Dasari, Hari Prasad ;
Ahn, Kiyong ;
Park, Sun-Young ;
Hong, Jongsup ;
Kim, Hyoungchul ;
Yoon, Kyung Joong ;
Son, Ji-Won ;
Kim, Byung-Kook ;
Lee, Hae-Weon ;
Lee, Jong-Ho .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 672 :397-402
[30]   A transient analysis of a micro-tubular solid oxide fuel cell (SOFC) [J].
Serincan, Mustafa Fazil ;
Pasaogullari, Ugur ;
Sammes, Nigel M. .
JOURNAL OF POWER SOURCES, 2009, 194 (02) :864-872