Minimum spanning trees with sums of ratios

被引:9
|
作者
Skiscim, CC [1 ]
Palocsay, SW
机构
[1] Megisto Syst Inc, Dickerson, MD 20842 USA
[2] James Madison Univ, Comp Informat Operat Management Program, Harrisonburg, VA 22087 USA
关键词
fractional programming; sums of ratios; minimum spanning tree; combinatorial optimization;
D O I
10.1023/A:1008340311108
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present an algorithm for finding a minimum spanning tree where the costs are the sum of two linear ratios. We show how upper and lower bounds may be quickly generated. By associating each ratio value with a new variable in 'image space,' we show how to tighten these bounds by optimally solving a sequence of constrained minimum spanning tree problems. The resulting iterative algorithm then finds the globally optimal solution. Two procedures are presented to speed up the basic algorithm. One relies on the structure of the problem to find a locally optimal solution while the other is independent of the problem structure. Both are shown to be effective in reducing the computational effort. Numerical results are presented.
引用
收藏
页码:103 / 120
页数:18
相关论文
共 50 条
  • [41] NOTE ON BISECTING MINIMUM SPANNING TREES
    BOYCE, WM
    GAREY, MR
    JOHNSON, DS
    NETWORKS, 1978, 8 (03) : 187 - 192
  • [42] Minimum spanning trees and dissimilarity analysis
    Leclerc, B
    ORDINAL AND SYMBOLIC DATA ANALYSIS, 1996, : 215 - 224
  • [43] RECENT DEVELOPMENTS ON MINIMUM SPANNING TREES
    YAO, AC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05): : A597 - A597
  • [44] Balancing minimum spanning trees and multiple-source minimum routing cost spanning trees on metric graphs
    Lin, Chung-Ming
    Tsai, Yin Te
    Tang, Chuan Yi
    INFORMATION PROCESSING LETTERS, 2006, 99 (02) : 64 - 67
  • [45] Balancing minimum spanning trees and shortest-path trees
    Khuller, S.
    Raghavachari, B.
    Young, N.
    Algorithmica (New York), 1995, 14 (04):
  • [46] The minimum number of spanning trees in regular multigraphs
    Pekarek, Jakub
    Sereni, Jean-Sebastien
    Yilma, Zelealem B.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (04):
  • [47] On Family of Graphs with Minimum Number of Spanning Trees
    Zbigniew R. Bogdanowicz
    Graphs and Combinatorics, 2013, 29 : 1647 - 1652
  • [48] Decentralized pricing in minimum cost spanning trees
    Hougaard, Jens Leth
    Moulin, Herve
    Osterdal, Lars Peter
    ECONOMIC THEORY, 2010, 44 (02) : 293 - 306
  • [49] Minimum Bottleneck Spanning Trees with Degree Bounds
    Andersen, Patrick J.
    Ras, Charl J.
    NETWORKS, 2016, 68 (04) : 302 - 314
  • [50] Minimum spanning trees displaying semantic similarity
    Duch, W
    Matykiewicz, P
    INTELLIGENT INFORMATION PROCESSING AND WEB MINING, PROCEEDINGS, 2005, : 31 - 40