Minimum spanning trees with sums of ratios

被引:9
|
作者
Skiscim, CC [1 ]
Palocsay, SW
机构
[1] Megisto Syst Inc, Dickerson, MD 20842 USA
[2] James Madison Univ, Comp Informat Operat Management Program, Harrisonburg, VA 22087 USA
关键词
fractional programming; sums of ratios; minimum spanning tree; combinatorial optimization;
D O I
10.1023/A:1008340311108
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present an algorithm for finding a minimum spanning tree where the costs are the sum of two linear ratios. We show how upper and lower bounds may be quickly generated. By associating each ratio value with a new variable in 'image space,' we show how to tighten these bounds by optimally solving a sequence of constrained minimum spanning tree problems. The resulting iterative algorithm then finds the globally optimal solution. Two procedures are presented to speed up the basic algorithm. One relies on the structure of the problem to find a locally optimal solution while the other is independent of the problem structure. Both are shown to be effective in reducing the computational effort. Numerical results are presented.
引用
收藏
页码:103 / 120
页数:18
相关论文
共 50 条
  • [31] Balanced partition of minimum spanning trees
    Andersson, M
    Gudmundsson, J
    Levcopoulos, C
    Narasimhan, G
    COMPUTATIONAL SCIENCE-ICCS 2002, PT III, PROCEEDINGS, 2002, 2331 : 26 - 35
  • [32] Minimum spanning trees on random networks
    Dobrin, R
    Duxbury, PM
    PHYSICAL REVIEW LETTERS, 2001, 86 (22) : 5076 - 5079
  • [33] The vertex degrees of minimum spanning trees
    Cieslik, D
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2000, 125 (02) : 278 - 282
  • [34] Distributed and Autonomic Minimum Spanning Trees
    Rodrigues, Luiz A.
    Duarte, Elias P., Jr.
    Arantes, Luciana
    2014 BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 2014, : 138 - 146
  • [35] Minimum restricted diameter spanning trees
    Hassin, R
    Levin, A
    DISCRETE APPLIED MATHEMATICS, 2004, 137 (03) : 343 - 357
  • [36] Hierarchical clustering in minimum spanning trees
    Yu, Meichen
    Hillebrand, Arjan
    Tewarie, Prejaas
    Meier, Jil
    van Dijk, Bob
    Van Mieghem, Piet
    Stam, Cornelis Jan
    CHAOS, 2015, 25 (02)
  • [37] Distributed Minimum Degree Spanning Trees
    Dinitz, Michael
    Halldorsson, Magnus M.
    Izumi, Taisuke
    Newport, Calvin
    PROCEEDINGS OF THE 2019 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC '19), 2019, : 511 - 520
  • [38] Counting minimum weight spanning trees
    Broder, AZ
    Mayr, EW
    JOURNAL OF ALGORITHMS, 1997, 24 (01) : 171 - 176
  • [39] On the Simultaneous Minimum Spanning Trees Problem
    Konecny, Matej
    Kucera, Stanislav
    Novotna, Jana
    Pekarek, Jakub
    Smolik, Martin
    Tetek, Jakub
    Topfer, Martin
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2018, 2018, 10743 : 235 - 248
  • [40] Computing minimum spanning trees with uncertainty
    Erlebach, Thomas
    Hoffmann, Michael
    Krizanc, Danny
    Mihal'ak, Matus
    Raman, Rajeev
    STACS 2008: PROCEEDINGS OF THE 25TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, 2008, : 277 - +