Minimum spanning trees with sums of ratios

被引:9
|
作者
Skiscim, CC [1 ]
Palocsay, SW
机构
[1] Megisto Syst Inc, Dickerson, MD 20842 USA
[2] James Madison Univ, Comp Informat Operat Management Program, Harrisonburg, VA 22087 USA
关键词
fractional programming; sums of ratios; minimum spanning tree; combinatorial optimization;
D O I
10.1023/A:1008340311108
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present an algorithm for finding a minimum spanning tree where the costs are the sum of two linear ratios. We show how upper and lower bounds may be quickly generated. By associating each ratio value with a new variable in 'image space,' we show how to tighten these bounds by optimally solving a sequence of constrained minimum spanning tree problems. The resulting iterative algorithm then finds the globally optimal solution. Two procedures are presented to speed up the basic algorithm. One relies on the structure of the problem to find a locally optimal solution while the other is independent of the problem structure. Both are shown to be effective in reducing the computational effort. Numerical results are presented.
引用
收藏
页码:103 / 120
页数:18
相关论文
共 50 条
  • [21] Finding minimum congestion spanning trees
    Werneck, RFF
    Setubal, JC
    da Conceiçao, AF
    ALGORITHM ENGINEERING, 1999, 1668 : 60 - 71
  • [22] Parametric and kinetic minimum spanning trees
    Agarwal, PK
    Eppstein, D
    Guibas, LJ
    Henzinger, MR
    39TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1998, : 596 - 605
  • [23] Minimum spanning trees for community detection
    Wu, Jianshe
    Li, Xiaoxiao
    Jiao, Licheng
    Wang, Xiaohua
    Sun, Bo
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (09) : 2265 - 2277
  • [24] Minimum restricted diameter spanning trees
    Hassin, R
    Levin, A
    APPROXIMATION ALGORITHMS FOR COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2002, 2462 : 175 - 184
  • [25] CUMULATIVE CONSTRUCTION OF MINIMUM SPANNING TREES
    ROGER, JH
    CARPENTE.RG
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1971, 20 (02) : 192 - &
  • [26] On minimum edge ranking spanning trees
    Makino, K
    Uno, Y
    Ibaraki, T
    JOURNAL OF ALGORITHMS, 2001, 38 (02) : 411 - 437
  • [27] Distributed verification of minimum spanning trees
    Amos Korman
    Shay Kutten
    Distributed Computing, 2007, 20 : 253 - 266
  • [28] On Sorting, Heaps, and Minimum Spanning Trees
    Gonzalo Navarro
    Rodrigo Paredes
    Algorithmica, 2010, 57 : 585 - 620
  • [29] Balanced partition of minimum spanning trees
    Andersson, M
    Gudmundsson, J
    Levcopoulos, C
    Narasimhan, G
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2003, 13 (04) : 303 - 316
  • [30] Minimum bounded degree spanning trees
    Goemans, Michel X.
    47TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2006, : 273 - 282