Minimum spanning trees with sums of ratios

被引:9
|
作者
Skiscim, CC [1 ]
Palocsay, SW
机构
[1] Megisto Syst Inc, Dickerson, MD 20842 USA
[2] James Madison Univ, Comp Informat Operat Management Program, Harrisonburg, VA 22087 USA
关键词
fractional programming; sums of ratios; minimum spanning tree; combinatorial optimization;
D O I
10.1023/A:1008340311108
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present an algorithm for finding a minimum spanning tree where the costs are the sum of two linear ratios. We show how upper and lower bounds may be quickly generated. By associating each ratio value with a new variable in 'image space,' we show how to tighten these bounds by optimally solving a sequence of constrained minimum spanning tree problems. The resulting iterative algorithm then finds the globally optimal solution. Two procedures are presented to speed up the basic algorithm. One relies on the structure of the problem to find a locally optimal solution while the other is independent of the problem structure. Both are shown to be effective in reducing the computational effort. Numerical results are presented.
引用
收藏
页码:103 / 120
页数:18
相关论文
共 50 条
  • [1] Minimum Spanning Trees with Sums of Ratios
    Christopher C. Skiscim
    Susan W. Palocsay
    Journal of Global Optimization, 2001, 19 : 103 - 120
  • [2] Degree sums and dense spanning trees
    Li, Tao
    Gao, Yingqi
    Dong, Qiankun
    Wang, Hua
    PLOS ONE, 2017, 12 (09):
  • [3] On generalized minimum spanning trees
    Feremans, C
    Labbé, M
    Laporte, G
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2001, 134 (02) : 457 - 458
  • [4] On partitioning minimum spanning trees
    Guttmann-Beck, Nili
    Hassin, Refael
    Stern, Michal
    DISCRETE APPLIED MATHEMATICS, 2024, 359 : 45 - 54
  • [5] The minimum labeling spanning trees
    Chang, RS
    Leu, SJ
    INFORMATION PROCESSING LETTERS, 1997, 63 (05) : 277 - 282
  • [6] Successive minimum spanning trees
    Janson, Svante
    Sorkin, Gregory B.
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (01) : 126 - 172
  • [7] The saga of minimum spanning trees
    Mares, Martin
    COMPUTER SCIENCE REVIEW, 2008, 2 (03) : 165 - 221
  • [8] CLUSTERING WITH MINIMUM SPANNING TREES
    Zhou, Yan
    Grygorash, Oleksandr
    Hain, Thomas F.
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2011, 20 (01) : 139 - 177
  • [9] On Steiner trees and minimum spanning trees in hypergraphs
    Polzin, T
    Daneshmand, SV
    OPERATIONS RESEARCH LETTERS, 2003, 31 (01) : 12 - 20
  • [10] Spanning trees with minimum weighted degrees
    Ghodsi, Mohammad
    Mahini, Hamid
    Mirjalali, Kian
    Gharan, Shayan Oveis
    R., Amin S. Sayedi
    Zadimoghaddam, Morteza
    INFORMATION PROCESSING LETTERS, 2007, 104 (03) : 113 - 116