Structure of the solution set for a vector valued elliptic boundary value problem with a Lipschitz nonlinear term

被引:3
作者
Sato, T [1 ]
Yanagida, E [1 ]
机构
[1] Tohoku Univ, Inst Math, Sendai, Miyagi 9808578, Japan
基金
日本学术振兴会;
关键词
elliptic boundary value problem; Lipschitz nonlinearity; Banach space;
D O I
10.1016/j.na.2004.07.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the boundary value problem with the Dirichlet condition in a Banach space for a semilinear elliptic equation on a bounded domain in R-n whose nonlinear term satisfies the Lipschitz condition. If the Lipschitz constant L is less than lambda(l), then this problem has a unique solution, where lambda(l) is the least eigenvalue of the corresponding (real valued) eigenvalue problem. On the other hand, for any L > lambda(1) we can construct a nonlinear term with the Lipschitz constant L such that the solution set is homeomorphic to any prescribed closed subset of the Banach space. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:551 / 557
页数:7
相关论文
共 6 条
[1]  
DIESTEL J, 1977, MATH SURVES, V15
[2]  
Herzog G, 2000, MATH NACHR, V215, P103, DOI 10.1002/1522-2616(200007)215:1<103::AID-MANA103>3.3.CO
[3]  
2-H
[4]   THE 1ST BOUNDARY-VALUE PROBLEM FOR DELTA-U=F(X,U) IN BANACH-SPACES [J].
LEMMERT, R .
MATHEMATISCHE NACHRICHTEN, 1981, 101 :75-80
[5]   On the structure of the solution set of a third kind boundary value problem [J].
Takahasi, SE ;
Oka, H ;
Miura, T .
MATHEMATISCHE NACHRICHTEN, 2003, 257 :99-107
[6]  
ZAREMBA S, 2005, CONTRIBUTION THEORIE, P140