Wet chemical synthesis of metal oxide nanoparticles: a review

被引:300
作者
Nikam, A. V. [1 ]
Prasad, B. L. V. [2 ]
Kulkarni, A. A. [1 ]
机构
[1] CSIR, Natl Chem Lab, Chem Engn Proc Dev Div, Dr Homi Bhabha Rd, Pune 411008, Maharashtra, India
[2] CSIR, Natl Chem Lab, Phys & Mat Chem Div, Dr Homi Bhabha Rd, Pune 411008, Maharashtra, India
来源
CRYSTENGCOMM | 2018年 / 20卷 / 35期
关键词
MICROWAVE-ASSISTED SYNTHESIS; COLLOIDAL NANOCRYSTALS; MICROFLUIDIC SYNTHESIS; SILICA NANOPARTICLES; TIO2; NANOPARTICLES; ZNO NANOPARTICLES; MAGNETIC-PROPERTY; ZINC-OXIDE; SIZE; SHAPE;
D O I
10.1039/c8ce00487k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal oxide nanoparticles are an important class of nanomaterials that have found several applications in science and technology. Through wet chemical synthesis, it is possible to achieve selective surface structures, phases, shapes, and sizes of metal oxide nanoparticles, leading to a set of desired properties. Wet chemical synthesis routes allow fine tuning of the reaction conditions (temperature, concentration of substrate, additives or surfactants, pH, etc.) to afford the desired nanomaterials. In this review article, we highlight recent developments in the wet chemical synthesis of metal oxide nanoparticles to provide great control over the quality of the obtained nanomaterials. The review critically evaluates the different wet chemical methods for scalable production of metal oxide nanoparticles to satisfy the growing industrial demand for nanomaterials. Special attention is paid to continuous flow synthesis of metal oxide nanoparticles.
引用
收藏
页码:5091 / 5107
页数:17
相关论文
共 95 条
[61]   Facile Synthesis of Vanadium-Pentoxide Nanoparticles and Study on Their Electrochemical, Photocatalytic Properties [J].
Raj, Arguine Tes ;
Ramanujan, Kannan ;
Thangavel, Sakthivel ;
Gopalakrishan, Srikesh ;
Raghavan, Nivea ;
Venugopal, Gunasekaran .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (05) :3802-3808
[62]   Structural- and optical-properties analysis of single crystalline hematite (α-Fe2O3) nanocubes prepared by one-pot hydrothermal approach [J].
Rashid, Nur Maisarah Abdul ;
Haw, Choonyian ;
Chiu, Weesiong ;
Khanis, Noor Hamizah ;
Rohaizad, Aliff ;
Khiew, PoiSim ;
Rahman, Saadah Abdul .
CRYSTENGCOMM, 2016, 18 (25) :4720-4732
[63]   Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution [J].
Salazar-Alvarez, German ;
Muhammed, Mamoun ;
Zagorodni, Andrei A. .
CHEMICAL ENGINEERING SCIENCE, 2006, 61 (14) :4625-4633
[64]   Reaction Engineering Strategies for the Production of Inorganic Nanomaterials [J].
Sebastian, Victor ;
Arruebo, Manuel ;
Santamaria, Jesus .
SMALL, 2014, 10 (05) :835-853
[65]   Synthesis of ZnO nanoparticles using surfactant free in-air and microwave method [J].
Sharma, Deepali ;
Sharma, Sapna ;
Kaith, B. S. ;
Rajput, Jaspreet ;
Kaur, Mohinder .
APPLIED SURFACE SCIENCE, 2011, 257 (22) :9661-9672
[66]   Continuous Production of Cu2ZnSnS4 Nanocrystals in a Flow Reactor [J].
Shavel, Alexey ;
Cadavid, Doris ;
Ibanez, Maria ;
Carrete, Alex ;
Cabot, Andreu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (03) :1438-1441
[67]   Going with the Flow: Continuous Flow Routes to Colloidal Nanoparticles [J].
Skrabalak, Sara E. ;
Brutchey, Richard L. .
CHEMISTRY OF MATERIALS, 2016, 28 (04) :1003-1005
[68]   Shape-controlled syntheses of metal oxide nanoparticles by the introduction of rare-earth metals [J].
Song, Hyo-Won ;
Kim, Na-Young ;
Park, Ji-eun ;
Ko, Jae-Hyeon ;
Hickey, Robert J. ;
Kim, Yong-Hyun ;
Park, So-Jung .
NANOSCALE, 2017, 9 (08) :2732-2738
[69]   Continuous Hydrothermal Synthesis of Pr-Doped CaTiO3 Nanoparticles from a TiO2 Sol [J].
Sue, Kiwamu ;
Kawasaki, Shin-ichiro ;
Sato, Takafumi ;
Nishio-Hamane, Daisuke ;
Hakuta, Yukiya ;
Furuya, Takeshi .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (28) :7628-7634
[70]   Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles [J].
Sun, SH ;
Zeng, H ;
Robinson, DB ;
Raoux, S ;
Rice, PM ;
Wang, SX ;
Li, GX .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (01) :273-279