Ultrafiltration Membranes Functionalized with Copper Oxide and Zwitterions for Fouling Resistance

被引:11
|
作者
Hackett, Cannon [1 ]
Abolhassani, Mojtaba [1 ]
Greenlee, Lauren F. [2 ]
Thompson, Audie K. [1 ]
机构
[1] Univ Arkansas, Ralph E Martin Dept Chem Engn, Fayetteville, AR 72701 USA
[2] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
anti-fouling; ultrafiltration; polydopamine; copper oxide; zwitterion; NANOFILTRATION MEMBRANE; ANTIFOULING PROPERTIES; SILVER NANOCOMPOSITE; SURFACE MODIFICATION; SIO2; NANOPARTICLES; PERFORMANCE; COPOLYMERS; ADDITIVES; COMPOSITE; LAYER;
D O I
10.3390/membranes12050544
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Polymeric membrane fouling is a long-standing challenge for water filtration. Metal/metal oxide nanoparticle functionalization of the membrane surface can impart anti-fouling properties through the reactivity of the metal species and the generation of radical species. Copper oxide nanoparticles (CuO NPs) are effective at reducing organic fouling when used in conjunction with hydrogen peroxide, but leaching of copper ions from the membrane has been observed, which can hinder the longevity of the CuO NP activity at the membrane surface. Zwitterions can reduce organic fouling and stabilize NP attachment, suggesting a potential opportunity to combine the two functionalizations. Here, we coated polyethersulfone (PES) ultrafiltration membranes with polydopamine (PDA) and attached the zwitterionic compound, thiolated 2-methacryloyloxyethyl phosphorylcholine (MPC-SH), and CuO NPs. Functionalized membranes resulted in a higher flux recovery ratio (0.694) than the unfunctionalized PES control (0.599). Copper retention was high (>96%) for functionalized membranes. The results indicate that CuO NPs and MPC-SH can reduce organic fouling with only limited copper leaching.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Graphene Oxide Modified Polyamide 66 Ultrafiltration Membranes with Enhanced Anti-Fouling Performance
    Yan, Jiangyi
    Nie, Lihong
    Li, Guiliang
    Zhu, Yuanlu
    Gao, Ming
    Wu, Ruili
    Wang, Beifu
    MEMBRANES, 2022, 12 (05)
  • [32] Surface Modification of Ultrafiltration Membranes with 1,4-Benzoquinone and Polyetheramines to Improve Fouling Resistance
    Cheng, Yu-Heng
    Kirschner, Alon Y.
    Chang, Chia-Chih
    He, Zhengwang
    Nassr, Mostafa
    Emrick, Todd
    Freeman, Benny D.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (46) : 52390 - 52401
  • [33] INORGANIC FOULING OF MEMBRANES DURING ULTRAFILTRATION OF CASEIN WHEY
    ARMISHAW, RF
    NEW ZEALAND JOURNAL OF DAIRY SCIENCE AND TECHNOLOGY, 1982, 17 (03): : 213 - 228
  • [34] EFFECT OF SOLUBLE CALCIUM OF MILK ON FOULING OF ULTRAFILTRATION MEMBRANES
    RAO, HGR
    LEWIS, MJ
    GRANDISON, AS
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 1994, 65 (02) : 249 - 256
  • [35] REDUCED FOULING OF ULTRAFILTRATION MEMBRANES VIA SURFACE FLUORINATION
    SEDATH, RH
    TAYLOR, DR
    LI, NN
    SEPARATION SCIENCE AND TECHNOLOGY, 1993, 28 (1-3) : 255 - 269
  • [36] INFLUENCE OF THE MEMBRANE MATERIAL ON THE ADSORPTIVE FOULING OF ULTRAFILTRATION MEMBRANES
    JONSSON, C
    JONSSON, AS
    JOURNAL OF MEMBRANE SCIENCE, 1995, 108 (1-2) : 79 - 87
  • [37] OBSERVATIONS ON THE FOULING OF POLYSULFONE ULTRAFILTRATION MEMBRANES BY ACID WHEY
    NISBET, TJ
    THORN, TM
    WOOD, PW
    NEW ZEALAND JOURNAL OF DAIRY SCIENCE AND TECHNOLOGY, 1981, 16 (02): : 113 - 120
  • [38] Accessing of graphene oxide (GO) nanofiltration membranes for microbial and fouling resistance
    Wang, Jian
    Gao, Xueli
    Yu, Hui
    Wang, Qun
    Ma, Zhun
    Li, Zhaokui
    Zhang, Yushan
    Gao, Congjie
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 215 : 91 - 101
  • [39] Fouling mechanisms of submerged ultrafiltration membranes in greywater recycling
    Oschmann, N
    Nghiem, LD
    Schäfer, AI
    DESALINATION, 2005, 179 (1-3) : 215 - 223
  • [40] Removal of divalent cations reduces fouling of ultrafiltration membranes
    Abrahamse, A. J.
    Lipreau, C.
    Li, S.
    Heijman, S. G. J.
    JOURNAL OF MEMBRANE SCIENCE, 2008, 323 (01) : 153 - 158