Ultrafiltration Membranes Functionalized with Copper Oxide and Zwitterions for Fouling Resistance

被引:11
|
作者
Hackett, Cannon [1 ]
Abolhassani, Mojtaba [1 ]
Greenlee, Lauren F. [2 ]
Thompson, Audie K. [1 ]
机构
[1] Univ Arkansas, Ralph E Martin Dept Chem Engn, Fayetteville, AR 72701 USA
[2] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
anti-fouling; ultrafiltration; polydopamine; copper oxide; zwitterion; NANOFILTRATION MEMBRANE; ANTIFOULING PROPERTIES; SILVER NANOCOMPOSITE; SURFACE MODIFICATION; SIO2; NANOPARTICLES; PERFORMANCE; COPOLYMERS; ADDITIVES; COMPOSITE; LAYER;
D O I
10.3390/membranes12050544
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Polymeric membrane fouling is a long-standing challenge for water filtration. Metal/metal oxide nanoparticle functionalization of the membrane surface can impart anti-fouling properties through the reactivity of the metal species and the generation of radical species. Copper oxide nanoparticles (CuO NPs) are effective at reducing organic fouling when used in conjunction with hydrogen peroxide, but leaching of copper ions from the membrane has been observed, which can hinder the longevity of the CuO NP activity at the membrane surface. Zwitterions can reduce organic fouling and stabilize NP attachment, suggesting a potential opportunity to combine the two functionalizations. Here, we coated polyethersulfone (PES) ultrafiltration membranes with polydopamine (PDA) and attached the zwitterionic compound, thiolated 2-methacryloyloxyethyl phosphorylcholine (MPC-SH), and CuO NPs. Functionalized membranes resulted in a higher flux recovery ratio (0.694) than the unfunctionalized PES control (0.599). Copper retention was high (>96%) for functionalized membranes. The results indicate that CuO NPs and MPC-SH can reduce organic fouling with only limited copper leaching.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Novel polysulfone ultrafiltration membranes incorporating polydopamine functionalized graphene oxide with enhanced flux and fouling resistance
    Alkhouzaam, Abedalkader
    Qiblawey, Hazim
    JOURNAL OF MEMBRANE SCIENCE, 2021, 620
  • [2] Fabrication of functionalized halloysite nanotube blended ultrafiltration membranes for high flux and fouling resistance
    Park, Shinyun
    Yang, Eunmok
    Park, Hosik
    Choi, Heechul
    ENVIRONMENTAL ENGINEERING RESEARCH, 2020, 25 (05) : 771 - 778
  • [3] Improving the fouling resistance of nanocellulose membranes for ultrafiltration
    Yang, Mengying
    Myavagh, Pejman Hadi
    Ma, Hongyang
    Walker, Harold
    Hsiao, Benjamin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [4] Fouling resistant polyvinyl chloride ultrafiltration membranes containing functionalized chitosan nanoparticles
    Shirdast, Abbas
    Sharif, Alireza
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 359
  • [5] Fouling and cleaning of ultrafiltration membranes: A review
    Shi, Xiafu
    Tal, Galit
    Hankins, Nicholas P.
    Gitis, Vitaly
    JOURNAL OF WATER PROCESS ENGINEERING, 2014, 1 : 121 - 138
  • [6] Insights into polysaccharide fouling of ultrafiltration membranes
    Susanto, Heru
    Ulbricht, Mathias
    DESALINATION, 2006, 200 (1-3) : 181 - 182
  • [7] Fouling analysis of ultrafiltration and nanofiltration membranes
    Mosqueda-Jimenez, D. B.
    Huck, P. M.
    WATER PRACTICE AND TECHNOLOGY, 2006, 1 (04):
  • [8] Organic matter fouling of ultrafiltration membranes
    Makdissy, G
    Croué, JP
    Buisson, H
    Amy, G
    Legube, B
    MEMBRANES IN DRINKING AND INDUSTRIAL WATER PRODUCTION III, 2003, : 175 - 182
  • [9] Improving the fouling resistance of brackish water membranes via surface modification with graphene oxide functionalized chitosan
    Hegab, Hanaa M.
    Wimalasiri, Yasodinee
    Ginic-Markovic, Milena
    Zou, Linda
    DESALINATION, 2015, 365 : 99 - 107
  • [10] Ultrafiltration Membranes Enhanced with Electrospun Nanofibers Exhibit Improved Flux and Fouling Resistance
    Dobosz, Kerianne M.
    Kuo-Leblanc, Christopher A.
    Martin, Tyler J.
    Schiffman, Jessica D.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (19) : 5724 - 5733