ASYMPTOTIC BEHAVIOR OF RANDOM FITZHUGH-NAGUMO SYSTEMS DRIVEN BY COLORED NOISE

被引:79
|
作者
Gu, Anhui [1 ]
Wang, Bixiang [2 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] New Mexico Inst Min & Technol, Dept Math, Socorro, NM 87801 USA
来源
关键词
Random attractor; colored noise; white noise; FitzHugh-Nagumo system; FRACTIONAL BROWNIAN-MOTION; RANDOM DYNAMICAL-SYSTEMS; STOCHASTIC DIFFERENTIAL-EQUATIONS; RANDOM ATTRACTORS; PULLBACK ATTRACTORS; EVOLUTION-EQUATIONS; UNBOUNDED-DOMAINS; APPROXIMATION; EXISTENCE; UNIQUENESS;
D O I
10.3934/dcdsb.2018072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence and uniqueness of random attractors for the FitzHugh-Nagumo system driven by colored noise with a non-linear diffusion term. We demonstrate that the colored noise is much easier to deal with than the white noise for studying the pathwise dynamics of stochastic systems. In addition, we show the attractors of the random FitzHugh-Nagumo system driven by a linear multiplicative colored noise converge to that of the corresponding stochastic system driven by a linear multiplicative white noise.
引用
收藏
页码:1689 / 1720
页数:32
相关论文
共 50 条
  • [41] Numerical analysis of FitzHugh-Nagumo neurons on random networks
    Oyama, Y
    Yanagita, T
    Ichinomiya, T
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2006, (161): : 389 - 392
  • [42] Dynamical behavior of the almost-periodic discrete Fitzhugh-Nagumo systems
    Wang, Bixiang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (05): : 1673 - 1685
  • [43] Effects of noise on the subthreshold dynamics of the FitzHugh-Nagumo model
    Di Garbo, A
    Barbi, M
    Chillemi, S
    STOCHASTIC AND CHAOTIC DYNAMICS IN THE LAKES, 2000, 502 : 100 - 105
  • [44] Analytic first integrals of the FitzHugh-Nagumo systems
    Llibre, Jaume
    Valls, Claudia
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (02): : 237 - 245
  • [45] Dynamical complexity of FitzHugh-Nagumo neuron model driven by Levy noise and Gaussian white noise
    Guo, Yongfeng
    Wang, Linjie
    Dong, Qiang
    Lou, Xiaojuan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 181 : 430 - 443
  • [46] Stationary probability distributions for FitzHugh-Nagumo systems
    Kostur, M
    Sailer, X
    Schimansky-Geier, L
    FLUCTUATION AND NOISE LETTERS, 2003, 3 (02): : L155 - L166
  • [47] Control of spiral waves in FitzHugh-Nagumo systems
    Gao Jia-Zhen
    Xie Ling-Ling
    Xie Wei-Miao
    Gao Ji-Hua
    ACTA PHYSICA SINICA, 2011, 60 (08)
  • [48] On the dynamical behaviour of FitzHugh-Nagumo systems: Revisited
    Ringkvist, M.
    Zhou, Y.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) : 2667 - 2687
  • [49] Lyapunov functionals and stability for FitzHugh-Nagumo systems
    Freitas, P
    Rocha, C
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 169 (01) : 208 - 227
  • [50] Dynamics for stochastic Fitzhugh-Nagumo systems with general multiplicative noise on thin domains
    Li, Fuzhi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) : 5050 - 5078