Conductance-Based Structural Brain Connectivity in Aging and Dementia

被引:4
|
作者
Frau-Pascual, Aina [1 ]
Augustinack, Jean [1 ]
Varadarajan, Divya [1 ]
Yendiki, Anastasia [1 ]
Salat, David H. [1 ]
Fischl, Bruce [1 ,2 ]
Aganj, Iman [1 ,2 ]
机构
[1] Harvard Med Sch, Athinoula A Martinos Ctr Biomed Imaging, Massachusetts Gen Hosp, Boston, MA 02115 USA
[2] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
aging; Alzheimer's disease; brain connectivity; conductance; diffusion MRI; VARIANT FRONTOTEMPORAL DEMENTIA; MILD COGNITIVE IMPAIRMENT; NETWORK DIFFUSION-MODEL; ALZHEIMERS-DISEASE; FUNCTIONAL CONNECTIVITY; TENSOR MRI; PROGRESSION; PREDICTION; PATTERNS; HIPPOCAMPAL;
D O I
10.1089/brain.2020.0903
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Structural brain connectivity has been shown to be sensitive to the changes that the brain undergoes during Alzheimer's disease (AD) progression. Methods: In this work, we used our recently proposed structural connectivity quantification measure derived from diffusion magnetic resonance imaging, which accounts for both direct and indirect pathways, to quantify brain connectivity in dementia. We analyzed data from the second phase of Alzheimer's Disease Neuroimaging Initiative and third release in the Open Access Series of Imaging Studies data sets to derive relevant information for the study of the changes that the brain undergoes in AD. We also compared these data sets to the Human Connectome Project data set, as a reference, and eventually validated externally on two cohorts of the European DTI Study in Dementia database. Results: Our analysis shows expected trends of mean conductance with respect to age and cognitive scores, significant age prediction values in aging data, and regional effects centered among subcortical regions, and cingulate and temporal cortices. Discussion: Results indicate that the conductance measure has prediction potential, especially for age, that age and cognitive scores largely overlap, and that this measure could be used to study effects such as anticorrelation in structural connections.
引用
收藏
页码:566 / 583
页数:18
相关论文
共 50 条
  • [1] Quantification of structural brain connectivity via a conductance model
    Frau-Pascual, Aina
    Fogarty, Morgan
    Fisch, Bruce
    Yendiki, Anastasia
    Aganj, Iman
    NEUROIMAGE, 2019, 189 : 485 - 496
  • [2] DETECTING STRUCTURAL BRAIN CONNECTIVITY DIFFERENCES IN DEMENTIA THROUGH A CONDUCTANCE MODEL
    Frau-Pascual, Aina
    Augustinack, Jean
    Varadarajan, Divya
    Yendiki, Anastasia
    Fischl, Bruce
    Aganj, Iman
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 591 - 595
  • [3] Effects of aging on functional and structural brain connectivity
    Damoiseaux, Jessica S.
    NEUROIMAGE, 2017, 160 : 32 - 40
  • [4] Relating structural and functional anomalous connectivity in the aging brain via neural mass modeling
    Pons, A. J.
    Cantero, Jose L.
    Atienza, Mercedes
    Garcia-Ojalvo, Jordi
    NEUROIMAGE, 2010, 52 (03) : 848 - 861
  • [5] Resting-state functional connectivity in normal brain aging
    Ferreira, Luiz Kobuti
    Busatto, Geraldo F.
    NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2013, 37 (03): : 384 - 400
  • [6] Cortical Brain Connectivity Evaluated by Graph Theory in Dementia: A Correlation Study Between Functional and Structural Data
    Vecchio, Fabrizio
    Miraglia, Francesca
    Curcio, Giuseppe
    Altavilla, Riccardo
    Scrascia, Federica
    Giambattistelli, Federica
    Quattrocchi, Carlo Cosimo
    Bramanti, Placido
    Vernieri, Fabrizio
    Rossini, Paolo Maria
    JOURNAL OF ALZHEIMERS DISEASE, 2015, 45 (03) : 745 - 756
  • [7] Altered structural connectivity networks in dementia with lewy bodies
    Nicastro, Nicolas
    Mak, Elijah
    Surendranathan, Ajenthan
    Rittman, Timothy
    Rowe, James B.
    O'Brien, John T.
    BRAIN IMAGING AND BEHAVIOR, 2021, 15 (05) : 2445 - 2453
  • [8] Sex Differences in Magnetoencephalography-Identified Functional Connectivity in the Human Connectome Project Connectomics of Brain Aging and Dementia Cohort
    Bruna, Ricardo
    Maestu, Fernando
    Lopez-Sanz, David
    Bagic, Anto
    Cohen, Ann D.
    Chang, Yue-Fang
    Cheng, Yu
    Doman, Jack
    Huppert, Ted
    Kim, Tae
    Roush, Rebecca E.
    Snitz, Beth E.
    Becker, James T.
    BRAIN CONNECTIVITY, 2022, 12 (06) : 561 - 570
  • [9] The Brain's Aging Resting State Functional Connectivity
    Khan, Ali F.
    Saleh, Nada
    Smith, Zachary A.
    JOURNAL OF INTEGRATIVE NEUROSCIENCE, 2025, 24 (01)
  • [10] Structural and functional brain connectivity in presymptomatic familial frontotemporal dementia
    Dopper, Elise G. P.
    Rombouts, Serge A. R. B.
    Jiskoot, Lize C.
    den Heijer, Tom
    de Graaf, J. Roos A.
    de Koning, Inge
    Hammerschlag, Anke R.
    Seelaar, Harro
    Seeley, William W.
    Veer, Ilya M.
    van Buchem, Mark A.
    Rizzu, Patrizia
    van Swieten, John C.
    NEUROLOGY, 2013, 80 (09) : 814 - 823