Tame kernels and Tate kernels of quadratic number fields

被引:0
作者
Qin, HR [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] ICTP, I-34100 Trieste, Italy
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2001年 / 530卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a quadratic field. We obtain necessary and sufficient conditions for an element of order two in the tame kernel of F to be a fourth power in the tame kernel of F. This enables us to compute the 8-rank of the tame kernel of F. In the case when F is an imaginary quadratic field with 8-rank of K2OF = 0, the explicit structure of the Tate kernel of F can be obtained by our method.
引用
收藏
页码:105 / 144
页数:40
相关论文
共 23 条
  • [1] THE 2-SYLOW-SUBGROUP OF THE TAME KERNEL OF NUMBER-FIELDS
    BRAUCKMANN, B
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1991, 43 (02): : 255 - 264
  • [2] Tame and wild kernels of quadratic imaginary number fields
    Browkin, J
    Gangl, H
    [J]. MATHEMATICS OF COMPUTATION, 1999, 68 (225) : 291 - 305
  • [3] BROWKIN J, 1982, J REINE ANGEW MATH, V331, P104
  • [4] ON THE 2-SYLOW SUBGROUP OF THE HILBERT KERNEL OF K2 OF NUMBER-FIELDS
    CANDIOTTI, A
    KRAMER, K
    [J]. ACTA ARITHMETICA, 1989, 52 (01) : 49 - 65
  • [5] CONNER PE, 1995, ACTA ARITH, V73, P59
  • [6] THE 4-RANK OF K2(O)
    CONNER, PE
    HURRELBRINK, J
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1989, 41 (05): : 932 - 960
  • [7] Hurrelbrink J, 1998, J REINE ANGEW MATH, V499, P145
  • [8] Ireland K., 1982, CLASSICAL INTRO MODE, DOI DOI 10.1007/978-1-4757-1779-2
  • [9] KEuNE F., 1989, P RES S K THEORY ITS, V2, P625
  • [10] THE STRUCTURE OF THE 3-SYLOW-SUBGROUP OF K2(O),I
    KOLSTER, M
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1986, 61 (03) : 376 - 388