Linear stability for some symmetric periodic simultaneous binary collision orbits in the four-body problem

被引:19
作者
Bakker, Lennard F. [1 ]
Ouyang, Tiancheng [1 ]
Yan, Duokui [2 ]
Simmons, Skyler [1 ]
Roberts, Gareth E. [3 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[2] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[3] Coll Holy Cross, Dept Math & Comp Sci, Worcester, MA 01610 USA
基金
美国国家科学基金会;
关键词
N-body problem; Singular periodic orbits; Stability; Schubart-like orbit; Roberts' method; RECTILINEAR 3-BODY PROBLEM; EXISTENCE; PROOF;
D O I
10.1007/s10569-010-9298-y
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We apply the analytic-numerical method of Roberts to determine the linear stability of time-reversible periodic simultaneous binary collision orbits in the symmetric collinear four-body problem with masses 1, m, m, 1, and also in a symmetric planar four-body problem with equal masses. In both problems, the assumed symmetries reduce the determination of linear stability to the numerical computation of a single real number. For the collinear problem, this verifies the earlier numerical results of Sweatman for linear stability with respect to collinear and symmetric perturbations.
引用
收藏
页码:147 / 164
页数:18
相关论文
共 20 条
[1]  
Aarseth S. J., 1974, Celestial Mechanics, V10, P185, DOI 10.1007/BF01227619
[2]  
[Anonymous], ASTRON NACHR
[3]  
BAKKER LF, 2010, EXISTENCE STABILITY
[4]   A remarkable periodic solution of the three-body problem in the case of equal masses [J].
Chenciner, A ;
Montgomery, R .
ANNALS OF MATHEMATICS, 2000, 152 (03) :881-901
[5]   STABILITY OF INTERPLAY MOTIONS [J].
HENON, M .
CELESTIAL MECHANICS, 1977, 15 (02) :243-261
[6]  
Hietarinta Jarmo, 1993, Chaos, V3, P183, DOI 10.1063/1.165984
[7]   A topological existence proof for the Schubart orbits in the collinear three-body problem [J].
Moeckel, Richard .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2008, 10 (2-3) :609-620
[8]   BRAIDS IN CLASSICAL DYNAMICS [J].
MOORE, C .
PHYSICAL REVIEW LETTERS, 1993, 70 (24) :3675-3679
[9]   The rectilinear three-body problem [J].
Orlov, Victor Vladimirovich ;
Petrova, Anna V. ;
Tanikawa, Kiyotaka ;
Saito, Masaya M. ;
Martynova, Alija I. .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2008, 100 (02) :93-120
[10]  
OUYANG T, 2010, CELEST MECH DY UNPUB