Rogers-Ramanujan and the Baker-Gammel-Wills (Pade") conjecture

被引:32
作者
Lubinsky, DS [1 ]
机构
[1] Univ Witwatersrand, John Knopfmacher Ctr, ZA-2050 Johannesburg, South Africa
[2] Georgia Inst Technol, Atlanta, GA 30332 USA
关键词
D O I
10.4007/annals.2003.157.847
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
1961, Baker, Gammel and Wills conjectured that for functions f meromorphic in the unit ball, a subsequence of its diagonal Pade approximants converges uniformly in compact subsets of the ball omitting poles of f. There is also apparently a cruder version of the conjecture due to Pade himself, going back to the early twentieth century. We show here that for carefully chosen q on the unit circle, the Rogers-Ramanujan continued fraction 1+ (qz)\/(\1) + q(2z\)/\1 + q(3z)\/(\1) + ... provides a counterexample to the conjecture. We also highlight some other interesting phenomena displayed by this fraction.
引用
收藏
页码:847 / 889
页数:43
相关论文
共 50 条
[31]   Weighted maximum over minimum modulus of polynomials, applied to ray sequences of Pade approximants [J].
Lubinsky, DS .
CONSTRUCTIVE APPROXIMATION, 2002, 18 (02) :285-308
[32]  
Lubinsky DS, 1999, INT SER NUMER MATH, V132, P159
[33]   CONVERGENCE OF PADE APPROXIMANTS OF PARTIAL THETA-FUNCTIONS AND THE ROGERS-SZEGO POLYNOMIALS [J].
LUBINSKY, DS ;
SAFF, EB .
CONSTRUCTIVE APPROXIMATION, 1987, 3 (04) :331-361
[34]   DIVERGENCE OF COMPLEX RATIONAL-APPROXIMATIONS [J].
LUBINSKY, DS .
PACIFIC JOURNAL OF MATHEMATICS, 1983, 108 (01) :141-153
[35]  
LUBINSKY DS, 2002, RENDICONTI CIRCO S 2, V68, P49
[36]  
Milovanovic G.V., 1994, TOPICS POLYNOMIALS E
[37]  
PERRON O, 1957, LEHRE KETTEBRUCHEN
[38]   ON THE RADIUS OF CONVERGENCE OF Q-SERIES [J].
PETRUSKA, G .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1992, 3 (03) :353-364
[40]  
RAKHMANOV EA, 1981, USSR SBORNIK, V40, P149