Rogers-Ramanujan and the Baker-Gammel-Wills (Pade") conjecture

被引:32
作者
Lubinsky, DS [1 ]
机构
[1] Univ Witwatersrand, John Knopfmacher Ctr, ZA-2050 Johannesburg, South Africa
[2] Georgia Inst Technol, Atlanta, GA 30332 USA
关键词
D O I
10.4007/annals.2003.157.847
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
1961, Baker, Gammel and Wills conjectured that for functions f meromorphic in the unit ball, a subsequence of its diagonal Pade approximants converges uniformly in compact subsets of the ball omitting poles of f. There is also apparently a cruder version of the conjecture due to Pade himself, going back to the early twentieth century. We show here that for carefully chosen q on the unit circle, the Rogers-Ramanujan continued fraction 1+ (qz)\/(\1) + q(2z\)/\1 + q(3z)\/(\1) + ... provides a counterexample to the conjecture. We also highlight some other interesting phenomena displayed by this fraction.
引用
收藏
页码:847 / 889
页数:43
相关论文
共 50 条
[1]  
ADIGA C, 1985, REMANUJANS 2 NOTEBOO, V53, pCH16
[2]  
[Anonymous], 1975, Essentials of Pade Approximations
[3]  
ARMS RJ, 1970, MATH ESSAYS DEDICATE, P1
[4]  
Baker G. A., 1961, J MATH ANAL APPL, V2, P405, DOI [DOI 10.1016/0022-247X(61)90019-1, 10.1016/0022-247X(61)90019-1]
[5]  
Baker Jr G, 1996, Encyclopedia of Mathematics and its Applications, V59
[6]  
Brezinski C., 1991, History of continued fractions and Pade approximants, V12
[7]  
BUSLAEV VI, 1984, MATH USSR SB, V48, P535
[8]  
DeVore Ronald A., 1993, CONSTRUTIVE APPROXIM, V303
[9]   IRREGULAR DISTRIBUTION OF (N-BETA), N=1,2,3, ... QUADRATURE OF SINGULAR INTEGRANDS, AND CURIOUS BASIC HYPERGEOMETRIC-SERIES [J].
DRIVER, KA ;
LUBINSKY, DS ;
PETRUSKA, G ;
SARNAK, P .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1991, 2 (04) :469-481
[10]  
DRIVER KA, 1991, AEQUATIONES MATH, V42, P85