Machine Learning of Noise-Resilient Quantum Circuits

被引:66
|
作者
Cincio, Lukasz [1 ]
Rudinger, Kenneth [2 ]
Sarovar, Mohan [3 ]
Coles, Patrick J. [1 ]
机构
[1] Los Alamos Natl Lab, Theoret Div, MS 213, Los Alamos, NM 87545 USA
[2] Sandia Natl Labs, Quantum Comp Sci, POB 5800, Albuquerque, NM 87185 USA
[3] Sandia Natl Labs, Extreme Scale Data Sci & Analyt, Livermore, CA 94550 USA
来源
PRX QUANTUM | 2021年 / 2卷 / 01期
关键词
Quantum optics - Cost functions - Qubits - Sodium chloride - Timing circuits;
D O I
10.1103/PRXQuantum.2.010324
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Noise mitigation and reduction will be crucial for obtaining useful answers from near-term quantum computers. In this work, we present a general framework based on machine learning for reducing the impact of quantum hardware noise on quantum circuits. Our method, called noise-aware circuit learning (NACL), applies to circuits designed to compute a unitary transformation, prepare a set of quantum states, or estimate an observable of a many-qubit state. Given a task and a device model that captures information about the noise and connectivity of qubits in a device, NACL outputs an optimized circuit to accomplish this task in the presence of noise. It does so by minimizing a task-specific cost function over circuit depths and circuit structures. To demonstrate NACL, we construct circuits resilient to a fine-grained noise model derived from gate set tomography on a superconducting-circuit quantum device, for applications including quantum state overlap, quantum Fourier transform, and W-state preparation.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Noise-Resilient Quantum Machine Learning for Stability Assessment of Power Systems
    Zhou, Yifan
    Zhang, Peng
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (01) : 475 - 487
  • [2] Noise-resilient quantum power flow
    Feng, Fei
    Zhou, Yi-Fan
    Zhang, Peng
    iEnergy, 2023, 2 (01): : 63 - 70
  • [3] Dynamic adaptive quantum approximate optimization algorithm for shallow, noise-resilient circuits
    Yanakiev, Nikola
    Mertig, Normann
    Long, Christopher K.
    Arvidsson-Shukur, David R. M.
    PHYSICAL REVIEW A, 2024, 109 (03)
  • [4] Noise-resilient quantum random access codes
    Karthik, H. S.
    Gomez, S.
    Quinteros, F. M.
    Shenoy, H. Akshata
    Pawlowski, M.
    Walborn, S. P.
    Lima, G.
    Gomez, E. S.
    PHYSICAL REVIEW A, 2025, 111 (03)
  • [5] Noise-resilient quantum interface based on quantum nondemolition interactions
    Marek, Petr
    Filip, Radim
    PHYSICAL REVIEW A, 2010, 81 (04):
  • [6] Noise-resilient quantum evolution steered by dynamical decoupling
    Gang-Qin Liu
    Hoi Chun Po
    Jiangfeng Du
    Ren-Bao Liu
    Xin-Yu Pan
    Nature Communications, 4
  • [7] Noise-resilient quantum evolution steered by dynamical decoupling
    Liu, Gang-Qin
    Po, Hoi Chun
    Du, Jiangfeng
    Liu, Ren-Bao
    Pan, Xin-Yu
    NATURE COMMUNICATIONS, 2013, 4
  • [8] Noise-resilient deep learning for integrated circuit tomography
    Guo, Zhen
    Liu, Zhiguang
    Barbastathis, George
    Zhang, Qihang
    Glinsky, Michael E.
    Alpert, Bradley K.
    Levine, Zachary H.
    OPTICS EXPRESS, 2023, 31 (10) : 15355 - 15371
  • [9] A Noise-Resilient Online Learning Algorithm for Scene Classification
    Jian, Ling
    Gao, Fuhao
    Ren, Peng
    Song, Yunquan
    Luo, Shihua
    REMOTE SENSING, 2018, 10 (11)
  • [10] Noise-Resilient Ensemble Learning Using Evidence Accumulation
    Candel, Gaelle
    Naccache, David
    ADVANCED NETWORK TECHNOLOGIES AND INTELLIGENT COMPUTING, ANTIC 2021, 2022, 1534 : 374 - 388