Tannic acid-Fe3+ activated rapid polymerization of ionic conductive hydrogels with high mechanical properties, self-healing, and self-adhesion for flexible wearable sensors

被引:97
作者
Wang, Jing [1 ]
Dai, Tianyi [1 ]
Wu, Hao [2 ]
Ye, MingYu [1 ]
Yuan, Guoliang [3 ]
Jia, Hongbing [1 ]
机构
[1] Nanjing Univ Sci & Technol, Key Lab Soft Chem & Funct Mat, Minist Educ, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Med Univ, Sch Biomed Engn & Informat, Dept Biomed Engn, Nanjing 211166, Jiangsu, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Rapid polymerization; Self-healing; High strength; Self-adhesion; INSPIRED ADHESIVE; STRAIN SENSORS; FATIGUE-RESISTANT; TOUGH; TRANSPARENT;
D O I
10.1016/j.compscitech.2022.109345
中图分类号
TB33 [复合材料];
学科分类号
摘要
Wearable sensors based on hydrogels have been rapidly developed in many fields such as electronic skin, health detection, and human-machine interface. Wearable sensors for real-time monitoring of human activities require hydrogels with desirable mechanical strength, self-healing ability, sensing stability, and self-adhesion. However, to meet all these mentioned requirements, the preparation process of hydrogels is always complicated and timeconsuming. Herein, rapid polymerization hydrogels (PATG-B-Fe) for wearable sensors were designed from bacterial cellulose nanowhisker (BCW), tannic acid (TA), polyacrylic acid (PAA), Fe3+ and glycerol/water (Gly/ H2O). The dual catalysis system of TA-Fe3+ and Gly remarkably shortened the reaction time to 4 s at ambient temperature. With multiple hydrogen bonds and coordination among BCW-TA, PAA, and Fe3+, hydrogels exhibited an excellent trade-off between mechanical (stress of 203 kPa, elongation at break of 1950%) and selfhealing property (91% of efficiency). Strain sensors based on PATG-B-Fe hydrogels had good sensitivity (Gauge factor, maximum GF = 5.2 in 1200-1900% strain) and stable sensing properties at a wide temperature range ( 20-60 degrees C). Furthermore, strain sensors were adhered directly to skin to monitor large and subtle human movements. We believe PATG-B-Fe sensors may be a new horizon for the development of wearable and flexible electronic devices in the future.
引用
收藏
页数:11
相关论文
共 58 条
[1]   Highly tough supramolecular double network hydrogel electrolytes for an artificial flexible and low-temperature tolerant sensor [J].
Chen, Guoqi ;
Huang, Jianren ;
Gu, Jianfeng ;
Peng, Shuijiao ;
Xiang, Xiaotong ;
Chen, Kai ;
Yang, Xiaoxiang ;
Guan, Lunhui ;
Jiang, Xiancai ;
Hou, Linxi .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (14) :6776-6784
[2]   Temperature-regulated flexibility of polymer chains in rapidly self-healing hydrogels [J].
Chen, Rui ;
Xu, Xiubin ;
Yu, Danfeng ;
Liu, Minhuan ;
Xiao, Chuanghong ;
Wyman, Ian ;
Wang, Zhengping ;
Yang, Hui ;
Wu, Xu .
NPG ASIA MATERIALS, 2019, 11 (1)
[3]   Ultratough, Self-Healing, and Tissue-Adhesive Hydrogel for Wound Dressing [J].
Chen, Tao ;
Chen, Yujie ;
Rehman, Hafeez Ur ;
Chen, Zhen ;
Yang, Zhi ;
Wang, Man ;
Li, Hua ;
Liu, Hezhou .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (39) :33523-33531
[4]   Hydrogel with Ultrafast Self-Healing Property Both in Air and Underwater [J].
Chen, Wei-Peng ;
Hao, De-Zhao ;
Hao, Wan-Jun ;
Guo, Xing-Lin ;
Jiang, Lei .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (01) :1258-1265
[5]   Ultrafast gelation of multifunctional hydrogel/composite based on self-catalytic Fe3+/Tannic acid-cellulose nanofibers [J].
Chen, Yajun ;
Wang, Di ;
Mensaha, Alfred ;
Wang, Qingqing ;
Cai, Yibing ;
Wei, Qufu .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 606 :1457-1468
[6]   A plant-inspired long-lasting adhesive bilayer nanocomposite hydrogel based on redox-active Ag/Tannic acid-Cellulose nanofibers [J].
Chen, Yajun ;
Zhang, Yanan ;
Mensaha, Alfred ;
Li, Dawei ;
Wang, Qingqing ;
Wei, Qufu .
CARBOHYDRATE POLYMERS, 2021, 255
[7]   Multiple-Stimuli-Responsive and Cellulose Conductive Ionic Hydrogel for Smart Wearable Devices and Thermal Actuators [J].
Chen, Zhen ;
Liu, Jing ;
Chen, Yujie ;
Zheng, Xu ;
Liu, Hezhou ;
Li, Hua .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (01) :1353-1366
[8]   Lignin nanofiller-reinforced composites hydrogels with long-lasting adhesiveness, toughness, excellent self-healing, conducting, ultraviolet-blocking and antibacterial properties [J].
Cui, Han ;
Jiang, Weikun ;
Wang, Chao ;
Ji, Xingxiang ;
Liu, Yu ;
Yang, Guihua ;
Chen, Jiachuan ;
Lyu, Gaojin ;
Ni, Yonghao .
COMPOSITES PART B-ENGINEERING, 2021, 225
[9]   Activation of Persulfate by Quinones: Free Radical Reactions and Implication for the Degradation of PCBs [J].
Fang, Guodong ;
Gao, Juan ;
Dionysiou, Dionysios D. ;
Liu, Cun ;
Zhou, Dongmei .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (09) :4605-4611
[10]   Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry [J].
Gan, Donglin ;
Xing, Wensi ;
Jiang, Lili ;
Fang, Ju ;
Zhao, Cancan ;
Ren, Fuzeng ;
Fang, Liming ;
Wang, Kefeng ;
Lu, Xiong .
NATURE COMMUNICATIONS, 2019, 10 (1)