Stability of solutions of Caputo fractional stochastic differential equations

被引:16
作者
Xiao, Guanli [1 ]
Wang, JinRong [1 ,2 ]
机构
[1] Guizhou Univ, Dept Math, Guiyang 550025, Guizhou, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2021年 / 26卷 / 04期
基金
中国国家自然科学基金;
关键词
Caputo fractional derivative; stochastic differential equations; stability; EXISTENCE; DRIVEN;
D O I
10.15388/namc.2021.26.22421
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the stability of Caputo-type fractional stochastic differential equations. Stochastic stability and stochastic asymptotical stability are shown by stopping time technique. Almost surly exponential stability and pth moment exponentially stability are derived by a new established Ito's formula of Caputo version. Numerical examples are given to illustrate the main results.
引用
收藏
页码:581 / 596
页数:16
相关论文
共 25 条
[1]   A new approach to the group analysis of one-dimensional stochastic differential equations [J].
Abdullin, M. A. ;
Meleshko, S. V. ;
Nasyrov, F. S. .
JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2014, 55 (02) :191-198
[2]  
Aksendal B., 2000, Stochastic Differential Equations, V82, DOI DOI 10.1007/978-3-662-03185-8
[3]   Existence of solution to a local fractional nonlinear differential equation [J].
Bayour, Benaoumeur ;
Torres, Delfim F. M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 312 :127-133
[4]  
Burton TA, 2013, FIXED POINT THEOR-RO, V14, P313
[5]  
Burton TA, 2002, DYN SYST APPL, V11, P499
[6]   Krasnoselskii's fixed point theorem and stability [J].
Burton, TA ;
Furumochi, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 49 (04) :445-454
[7]   Existence and exponential stability for neutral stochastic fractional differential equations with impulses driven by Poisson jumps [J].
Chadha, Alka ;
Bora, Swaroop Nandan .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2018, 90 (05) :663-681
[8]   On stable manifolds for planar fractional differential equations [J].
Cong, N. D. ;
Doan, T. S. ;
Siegmund, S. ;
Tuan, H. T. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 226 :157-168
[9]   Asymptotic behavior of linear fractional stochastic differential equations with time-varying delays [J].
Dung Nguyen .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (01) :1-7
[10]   Backward stochastic differential equations driven by G-Brownian motion [J].
Hu, Mingshang ;
Ji, Shaolin ;
Peng, Shige ;
Song, Yongsheng .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (01) :759-784