Analysis of time-series gene expression data: Methods, challenges, and opportunities

被引:88
作者
Androulakis, I. P. [1 ]
Yang, E.
Almon, R. R.
机构
[1] Rutgers State Univ, Dept Biomed Engn, Piscataway, NJ 08854 USA
[2] SUNY Buffalo, Dept Biol Sci, Buffalo, NY 14260 USA
[3] SUNY Buffalo, Dept Pharmaceut Sci, Buffalo, NY 14260 USA
关键词
microarrays; bioinformatics; regulation; clustering; pharmacogenomics;
D O I
10.1146/annurev.bioeng.9.060906.151904
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Monitoring the change in expression patterns over time provides the distinct possibility of unraveling the mechanistic drivers characterizing cellular responses. Gene arrays measuring the level of mRNA expression of thousands of genes simultaneously provide a method of high-throughput data collection necessary for obtaining the scope of data required for understanding the complexities of living organisms. Unraveling the coherent complex structures of transcriptional dynamics is the goal of a large family of computational methods aiming at upgrading the information content of time-course gene expression data. In this review, we summarize the qualitative characteristics of these approaches, discuss the main challenges that this type of complex data present, and, finally, explore the opportunities in the context of developing mechanistic models of cellular response.
引用
收藏
页码:205 / 228
页数:24
相关论文
共 121 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
Alberts B., 2002, Molecular Biology of The Cell, V4th
[3]   Quantifying the relationship between co-expression, co-regulation and gene function [J].
Allocco, DJ ;
Kohane, IS ;
Butte, AJ .
BMC BIOINFORMATICS, 2004, 5 (1)
[4]   Corticosteroid-regulated genes in rat kidney: mining time series array data [J].
Almon, RR ;
Lai, W ;
DuBois, DC ;
Jusko, WJ .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2005, 289 (05) :E870-E882
[5]   The genomic response of skeletal muscle to methylprednisolone using microarrays: tailoring data mining to the structure of the pharmacogenomic time series [J].
Almon, RR ;
DuBois, DC ;
Piel, WH ;
Jusko, WJ .
PHARMACOGENOMICS, 2004, 5 (05) :525-552
[6]  
ALMON RR, 2006, NEW RES PHARMACOGENE, pCH2
[7]   Expression profiling of glial genes during Drosophila embryogenesis [J].
Altenhein, Benjamin ;
Becker, Angela ;
Busold, Christian ;
Beckmann, Boris ;
Hoheisel, Joerg D. ;
Technau, Gerhard M. .
DEVELOPMENTAL BIOLOGY, 2006, 296 (02) :545-560
[8]   Integrative analysis of genome-scale data by using pseudoinverse projection predicts novel correlation between DNA replication and RNA transcription [J].
Alter, O ;
Golub, GH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (47) :16577-16582
[9]   Clustering of gene expression data using a local shape-based similarity measure [J].
Balasubramaniyan, R ;
Hüllermeier, E ;
Weskamp, N ;
Kämper, J .
BIOINFORMATICS, 2005, 21 (07) :1069-1077
[10]   Analyzing time series gene expression data [J].
Bar-Joseph, Z .
BIOINFORMATICS, 2004, 20 (16) :2493-2503