Online Glucose Prediction Using Computationally Efficient Sparse Kernel Filtering Algorithms in Type-1 Diabetes

被引:0
作者
Yu, Xia [1 ]
Rashid, Mudassir [2 ]
Feng, Jianyuan [2 ]
Hobbs, Nicole [3 ]
Hajizadeh, Iman [2 ]
Samadi, Sediqeh [2 ]
Sevil, Mert [3 ]
Lazaro, Caterina [4 ]
Maloney, Zacharie [4 ]
Littlejohn, Elizabeth [5 ]
Quinn, Laurie [3 ,6 ]
Cinar, Ali [2 ]
机构
[1] Northeastern Univ, Sch Informat Sci & Engn, Shenyang 110819, Liaoning, Peoples R China
[2] IIT, Dept Chem & Biol Engn, Chicago, IL 60616 USA
[3] IIT, Dept Biomed Engn, Chicago, IL 60616 USA
[4] IIT, Dept Elect & Comp Engn, Chicago, IL 60616 USA
[5] Univ Chicago, Kovler Diabet Ctr, Dept Pediat & Med, Chicago, IL 60637 USA
[6] Univ Illinois, Dept Biobehav Hlth Sci, Coll Nursing, Chicago, IL 60612 USA
基金
美国国家卫生研究院;
关键词
Kernel; Computational modeling; Sugar; Prediction algorithms; Predictive models; Adaptation models; Data models; Kernel filtering algorithms; sparsification; type-1 diabetes (T1D); ARTIFICIAL PANCREAS; PHYSICAL-ACTIVITY; GLYCEMIC CONTROL; EXERCISE; SYSTEM; MODEL;
D O I
10.1109/TCST.2018.2843785
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Streaming data from continuous glucose monitoring (CGM) systems enable the recursive identification of models to improve estimation accuracy for effective predictive glycemic control in patients with type-1 diabetes. A drawback of conventional recursive identification techniques is the increase in computational requirements, which is a concern for online and real-time applications such as the artificial pancreas systems implemented on handheld devices and smartphones where computational resources and memory are limited. To improve predictions in such computationally constrained hardware settings, efficient adaptive kernel filtering algorithms are developed in this paper to characterize the nonlinear glycemic variability by employing a sparsification criterion based on the information theory to reduce the computation time and complexity of the kernel filters without adversely deteriorating the predictive performance. Furthermore, the adaptive kernel filtering algorithms are designed to be insensitive to abnormal CGM measurements, thus compensating for measurement noise and disturbances. As such, the sparsification-based real-time model update framework can adapt the prediction models to accurately characterize the time-varying and nonlinear dynamics of glycemic measurements. The proposed recursive kernel filtering algorithms leveraging sparsity for improved computational efficiency are applied to both in-silico and clinical subjects, and the results demonstrate the effectiveness of the proposed methods.
引用
收藏
页码:3 / 15
页数:13
相关论文
共 50 条
  • [41] Restoring euglycemia in the basal state using continuous glucose monitoring in subjects with type 1 diabetes mellitus
    Zisser, Howard C.
    Bevier, Wendy C.
    Jovanovic, Lois
    DIABETES TECHNOLOGY & THERAPEUTICS, 2007, 9 (06) : 509 - 515
  • [42] Automatic Glucose Control During Meals and Exercise in Type 1 Diabetes: Proof-of-Concept in Silico Tests Using a Switched LPV Approach
    Colmegna, P. H.
    Bianchi, F. D.
    Sanchez-Pena, R. S.
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (05): : 1489 - 1494
  • [43] The challenges of achieving postprandial glucose control using closed-loop systems in patients with type 1 diabetes
    Gingras, Veronique
    Taleb, Nadine
    Roy-Fleming, Amelie
    Legault, Laurent
    Rabasa-Lhoret, Remi
    DIABETES OBESITY & METABOLISM, 2018, 20 (02) : 245 - 256
  • [44] Factors influencing the effectiveness of using flash glucose monitoring on glycemic control for type 1 diabetes in Saudi Arabia
    Alhodaib, Hala Ibrahim
    Alsulihem, Sama
    WORLD JOURNAL OF DIABETES, 2021, 12 (11)
  • [45] Glucose management for exercise using continuous glucose monitoring (CGM) and intermittently scannedCGM(isCGM) systems in type 1 diabetes: position statement of the European Association for the Study of Diabetes (EASD) and of the International Society for Pediatric and Adolescent Diabetes (ISPAD) endorsed byJDRFand supported by the American Diabetes Association (ADA)
    Moser, Othmar
    Riddell, Michael C.
    Eckstein, Max L.
    Adolfsson, Peter
    Rabasa-Lhoret, Remi
    van den Boom, Louisa
    Gillard, Pieter
    Norgaard, Kirsten
    Oliver, Nick S.
    Zaharieva, Dessi P.
    Battelino, Tadej
    de Beaufort, Carine
    Bergenstal, Richard M.
    Buckingham, Bruce
    Cengiz, Eda
    Deeb, Asma
    Heise, Tim
    Heller, Simon
    Kowalski, Aaron J.
    Leelarathna, Lalantha
    Mathieu, Chantal
    Stettler, Christoph
    Tauschmann, Martin
    Thabit, Hood
    Wilmot, Emma G.
    Sourij, Harald
    Smart, Carmel E.
    Jacobs, Peter G.
    Bracken, Richard M.
    Mader, Julia K.
    PEDIATRIC DIABETES, 2020, 21 (08) : 1375 - 1393
  • [46] PREDICTION OF TYPE 2 DIABETES MELLITUS USING FEATURE SELECTION-BASED MACHINE LEARNING ALGORITHMS
    Yilmaz, Atinc
    HEALTH PROBLEMS OF CIVILIZATION, 2022, 16 (02) : 128 - 139
  • [47] Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring
    K. Zarkogianni
    K. Mitsis
    E. Litsa
    M.-T. Arredondo
    G. Ficο
    A. Fioravanti
    K. S. Nikita
    Medical & Biological Engineering & Computing, 2015, 53 : 1333 - 1343
  • [48] Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring
    Zarkogianni, K.
    Mitsis, K.
    Litsa, E.
    Arredondo, M. -T.
    Fico, G.
    Fioravanti, A.
    Nikita, K. S.
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2015, 53 (12) : 1333 - 1343
  • [49] Minimizing the Risk of Exercise-Induced Glucose Fluctuations in People Living With Type 1 Diabetes Using Continuous Subcutaneous Insulin Infusion: An Overview of Strategies
    Molveau, Josephine
    Rabasa-Lhoret, Remi
    Taleb, Nadine
    Heyman, Elsa
    Myette-Cote, Etienne
    Suppere, Corinne
    Berthoin, Serge
    Tagougui, Semah
    CANADIAN JOURNAL OF DIABETES, 2021, 45 (07) : 666 - 676
  • [50] Multivariate Models of Blood Glucose Prediction in Type1 Diabetes: A Survey of the State-of-the-art
    Arora, Sunny
    Kumar, Shailender
    Kumar, Pardeep
    CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2023, 24 (04) : 532 - 552