Formation of ordered B structure on W(100)

被引:8
作者
Tuli, Farhana Jesmin [1 ]
Peng, Guansong [1 ]
Hossain, Shahadat [1 ,4 ]
Ninomiya, Kakeru [2 ]
Ahmed, Rezwan [1 ,5 ]
Nakagawa, Takeshi [1 ,3 ]
Mizuno, Seigi [1 ,3 ]
机构
[1] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Dept Mol & Mat Sci, 6-1 Kasuga Koen, Kasuga, Fukuoka 8168580, Japan
[2] Tohoku Univ, Int Ctr Synchrotron Radiat Innovat Smart, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[3] Kyushu Univ, Fac Engn Sci, Dept Adv Mat Sci & Engn, 6-1 Kasuga Koen, Kasuga, Fukuoka 8168580, Japan
[4] Bangladesh Atom Energy Commiss, Atom Energy Ctr, 1018-A Bayezid Bostami Rd,East Nasirabad, Chattogram 4209, Bangladesh
[5] High Energy Accelerator Res Org KEK, Inst Mat Struct Sci, 1-1 Oho, Tsukuba, Ibaraki 3050801, Japan
关键词
Low energy diffraction; Scanning tunneling microscopy; Surface structure; Boron; SURFACE-STRUCTURES; TUNGSTEN BORIDES; PHASE; BORON; LEED; TRANSITION; INTERLAYER; MO(100);
D O I
10.1016/j.susc.2021.121906
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Adsorption of a metalloid, boron (B) on W(100) was investigated using low energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) in ultra-high vacuum (UHV) condition. W(100)-c(2 x 2)-B superstructure was formed by annealing at high temperature (1200 K). The best fit structure obtained from LEED analysis and STM observation manifested that B atom positioned at four-fold hollow site with the coverage of 0.5 ML, forming low B concentrated tungsten boride compound, W2B, on W (100) surface. The W atoms beneath B atoms moved downward to form B-W bonds for stabilizing the surface atoms. XPS confirmed B 1s peak shifting towards lower binding energy compared to pure B 1s, which indicated the charge transfer from W to B. No ordered structures other than c(2 x 2) have been observed with the increase of B, which indicates that B atoms diffuse into bulk, not forming ordered B sheets, due to the low diffusion barrier into bulk by annealing.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Self-propagating high-temperature synthesis of advanced ceramics in the Mo-Si-B system: Kinetics and mechanism of combustion and structure formation
    Levashov, E. A.
    Pogozhev, Yu S.
    Potanin, A. Yu
    Kochetov, N. A.
    Kovalev, D. Yu
    Shvyndina, N. V.
    Sviridova, T. A.
    [J]. CERAMICS INTERNATIONAL, 2014, 40 (05) : 6541 - 6552
  • [22] Synthesis, Crystal Structure of a New Structure Type, and Thermal Analysis of the Ammonium Borophosphate (NH4)2[B2P3O11(OH)]
    Foerg, Katharina
    Hoeppe, Henning A.
    [J]. ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2017, 643 (12): : 766 - 771
  • [23] Surface structure determination of Pd on W(100) using X-ray photoelectron diffraction
    Lussani, F. C.
    de Siervo, A.
    de Figueiredo, J. J. S.
    Pancotti, A.
    Landers, R.
    [J]. SURFACE SCIENCE, 2011, 605 (21-22) : 1900 - 1905
  • [24] Intermixing and subsurface alloy formation: Ir on Cu(100)
    Gilarowski, G
    Niehus, H
    [J]. SURFACE SCIENCE, 1999, 436 (1-3) : 107 - 120
  • [25] Structure and ordering of oxygen on unreconstructed Ir(100)
    Ferstl, P.
    Schmitt, T.
    Schneider, M. A.
    Hammer, L.
    Michl, A.
    Mueller, S.
    [J]. PHYSICAL REVIEW B, 2016, 93 (23)
  • [26] Surface structure of SrTiO3(100)
    Kubo, T
    Nozoye, H
    [J]. SURFACE SCIENCE, 2003, 542 (03) : 177 - 191
  • [27] Growth and structure of Pd alloys on Cu(100)
    Murray, PW
    Stensgaard, I
    Laegsgaard, E
    Besenbacher, F
    [J]. SURFACE SCIENCE, 1996, 365 (03) : 591 - 601
  • [28] Oxidation resistance of B, W2B5, and WC powders
    Kudin, VG
    Makara, VA
    [J]. POWDER METALLURGY AND METAL CERAMICS, 2004, 43 (1-2) : 67 - 71
  • [29] Oxidation Resistance of B, W2B5, and WC Powders
    Vladimir G. Kudin
    [J]. Powder Metallurgy and Metal Ceramics, 2004, 43 : 67 - 71
  • [30] Impact of Si(100) doping methods on TiSi2 formation in vertical and horizontal FET structure areas with increasing aspect ratio
    Hoessler, Diana
    [J]. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2020, 109