Ramsey theory on generalized Baire space

被引:0
|
作者
Hathaway, Dan [1 ]
机构
[1] Univ Denver, Dept Math, Denver, CO 80208 USA
关键词
Ramsey theory; Generalized Baire space; Set-theoretic topology; Large cardinals;
D O I
10.1016/j.topol.2017.12.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that although the Galvin-Prikry Theorem does not hold on generalized Baire space with the standard topology, there are similar theorems which do hold on generalized Baire space with certain coarser topologies. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 112
页数:9
相关论文
共 50 条
  • [1] On Borel reducibility in generalized Baire space
    Friedman, Sy-David
    Hyttinen, Tapani
    Kulikov, Vadim
    FUNDAMENTA MATHEMATICAE, 2015, 231 (03) : 285 - 298
  • [2] FAILURES OF THE SILVER DICHOTOMY IN THE GENERALIZED BAIRE SPACE
    Friedman, Sy-David
    Kulikov, Vadim
    JOURNAL OF SYMBOLIC LOGIC, 2015, 80 (02) : 661 - 670
  • [3] On generalized Ramsey theory:: The bipartite case
    Axenovich, M
    Füredi, Z
    Mubayi, D
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 79 (01) : 66 - 86
  • [4] A dichotomy theorem for the generalized Baire space and elementary embeddability at uncountable cardinals
    Sziraki, Dorottya
    Vaananen, Jouko
    FUNDAMENTA MATHEMATICAE, 2017, 238 (01) : 53 - 78
  • [5] Ramsey theory and thermodynamics
    Shvalb, Nir
    Frenkel, Mark
    Shoval, Shraga
    Bormashenko, Edward
    HELIYON, 2023, 9 (02)
  • [6] The Ramsey theory of Henson graphs
    Dobrinen, Natasha
    JOURNAL OF MATHEMATICAL LOGIC, 2023, 23 (01)
  • [7] Ramsey-Turan theory
    Simonovits, M
    Sós, VT
    DISCRETE MATHEMATICS, 2001, 229 (1-3) : 293 - 340
  • [8] Schreier sets in Ramsey theory
    Farmaki, V.
    Negrepontis, S.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (02) : 849 - 880
  • [9] An Excursion into Nonlinear Ramsey Theory
    Doss, Adam
    Saracino, Dan
    Vestal, Donald L., Jr.
    GRAPHS AND COMBINATORICS, 2013, 29 (03) : 407 - 415
  • [10] An Excursion into Nonlinear Ramsey Theory
    Adam Doss
    Dan Saracino
    Donald L. Vestal
    Graphs and Combinatorics, 2013, 29 : 407 - 415