Quantum codes from cyclic codes over the ring Fq+v1Fq++vrFq

被引:0
作者
Gao, Yun [1 ,2 ]
Gao, Jian [3 ]
Fu, Fang-Wei [1 ,2 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Shandong Univ Technol, Sch Math & Stat, Zibo 255091, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum codes; Cyclic codes; Dual containing codes; Gray map; NONBINARY; CONSTRUCTION;
D O I
10.1007/s00200-018-0366-y
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let R=Fq+v1Fq++vrFq, where q is a power of a prime, vi2 0 for 1i,jr and r1. In this paper, the structure of cyclic codes over the ring R is studied and a Gray map phi from Rn to Fq(r+1)n is given. We give a construction of quantum codes from cyclic codes over the ring R. We derive Euclidean dual containing codes over Fq and Hermitian dual containing codes over Fp2m as Gray images of cyclic codes over R. In particular, we use r+1 codes associated with a cyclic code over R of arbitrary length to determine the parameters of the corresponding quantum code. Furthermore, some new non-binary quantum codes are obtained.
引用
收藏
页码:161 / 174
页数:14
相关论文
共 50 条
  • [31] Quantum codes from cyclic codes over the ring Fq+v1Fq+⋯+vrFq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q+v_1{\mathbb {F}}_q+\cdots +v_r{\mathbb {F}}_q$$\end{document}
    Yun Gao
    Jian Gao
    Fang-Wei Fu
    Applicable Algebra in Engineering, Communication and Computing, 2019, 30 (2) : 161 - 174
  • [32] Construction of new quantum codes derived from constacyclic codes over Fq2+uFq2+...+ ur-1Fq2
    Shi, Xiaoping
    Huang, Xinmei
    Yue, Qin
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2021, 32 (05) : 603 - 620
  • [33] Fq-linear codes over Fq-algebras
    Mahmoudi, Saadoun
    Mirmohammadirad, Fahime
    Samei, Karim
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 64
  • [34] (xn - (a plus bw), ξ, η)-skew constacyclic codes over Fq + wFq and their applications in quantum codes
    Ma, Fanghui
    Gao, Jian
    Fu, Fang-Wei
    QUANTUM INFORMATION PROCESSING, 2022, 21 (10)
  • [35] A study of quantum codes obtained from cyclic codes over a non-chain ring
    Dinh, Hai Q.
    Kumar, Narendra
    Singh, Abhay Kumar
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2022, 14 (04): : 909 - 923
  • [36] A study of quantum codes obtained from cyclic codes over a non-chain ring
    Hai Q. Dinh
    Narendra Kumar
    Abhay Kumar Singh
    Cryptography and Communications, 2022, 14 : 909 - 923
  • [37] Skew-quasi-cyclic codes over Ml(Fq)[X, θ]
    Li Xiuli
    Tan Mingming
    ARS COMBINATORIA, 2017, 133 : 163 - 177
  • [38] SKEW-CONSTACYCLIC CODES OVER Fq[ν]/⟨νq - ν⟩
    Kabore, Joel
    Fotue-Tabue, Alexandre
    Guenda, Kenza
    Charkani, Mohammed E.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2020, 25 (02): : 173 - 199
  • [39] m-ADIC RESIDUE CODES OVER Fq[v]/(v2 - v) AND DNA CODES
    Kuruz, Ferhat
    Oztas, Elif Segah
    Siap, Irfan
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (03) : 921 - 935
  • [40] Skew constacyclic codes over a non -chain ring Fq v]./(f (u), g(v), uv vu)
    Bhardwaj, Swati
    Raka, Madhu
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2020, 31 (3-4) : 173 - 194