Explicit numerical modeling assessment of basalt reinforced composites for low-velocity impact

被引:26
|
作者
Fragassa, Cristiano [1 ]
de Camargo, Felipe Vannucchi [1 ]
Pavlovic, Ana [1 ]
Minak, Giangiacomo [1 ]
机构
[1] Alma Mater Studiorum Univ Bologna, Dept Ind Engn, Bologna, Italy
关键词
Fiber-reinforced composites; Shell elements; Constitutive model; LS-DYNA; FIBER; DAMAGE; BEHAVIOR; FAILURE; CONCRETE;
D O I
10.1016/j.compositesb.2019.01.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Several studies have been carried out lately in order to evaluate the low-velocity impact response of polymeric composite materials allying experimental tests to numerical simulations. The many distinct ways of performing such analyze in the literature have raised the dubiousness on which are the most suitable simulation guidelines to perform a computational analysis that is both faithful to experimental tests as it can get, and at the same time is numerically-efficient dispensing excessively complex virtual models. Thus, the present study aims at defining the most appropriate guidelines to model a basalt fibre reinforced laminate when subjected to falling weight impact tests, comparing experimental results with explicit simulations that consider models with different numbers of plies and focusing on the calibration of essential parameters inherent of the constitutive equations attributed to the material. A precise yet intelligible model was constituted not only generating a correlation of over 97% to experimental data, but also accurately reproducing the indentation, showing that with an adequate modeling routine it is possible to numerically reproduce low-velocity impact tests on polymeric composites with a simplified virtual geometry.
引用
收藏
页码:522 / 535
页数:14
相关论文
共 50 条
  • [41] Low-Velocity Impact and Compression after Impact Properties of Hemp and Jute Fiber Reinforced Epoxy Composites
    Patil, Shreekant
    Reddy, Dagalahal Mallikarjuna
    Naveen, J.
    Swamy, S. S.
    Vignesh, P.
    Venkatachalam, G.
    JOURNAL OF NATURAL FIBERS, 2022, 19 (15) : 12309 - 12324
  • [42] Low-Velocity Impact and Compression-After-Impact Behaviour of Flax Fibre-Reinforced Composites
    Li, Yan
    Zhong, Junjie
    Fu, Kunkun
    ACTA MECHANICA SOLIDA SINICA, 2020, 33 (04) : 431 - 448
  • [43] Low-Velocity Impact and Compression-After-Impact Behaviour of Flax Fibre-Reinforced Composites
    Yan Li
    Junjie Zhong
    Kunkun Fu
    Acta Mechanica Solida Sinica, 2020, 33 : 431 - 448
  • [44] Modeling of Reinforced Concrete Slabs under High-Mass Low-Velocity Impact
    Hrynyk, Trevor D.
    Vecchio, Frank J.
    RESPONSE OF STRUCTURES UNDER EXTREME LOADING, 2015, : 651 - 658
  • [45] Low-Velocity Impact Response and Compression After Impact Assessment of Recycled Carbon Fiber-Reinforced Polymer Composites for Future Applications
    Shi, Jian
    Bao, Limin
    Kemmochi, Kiyoshi
    POLYMER COMPOSITES, 2014, 35 (08) : 1494 - 1506
  • [46] Healing of low-velocity impact damage in vascularised composites
    Norris, C. J.
    Bond, I. P.
    Trask, R. S.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2013, 44 : 78 - 85
  • [47] THE LOW-VELOCITY IMPACT RESPONSE OF BIO-COMPOSITES
    Dave, Maharshi J.
    Pandya, Tejas S.
    Ukyam, Suman Babu
    Street, Jason
    WOOD RESEARCH, 2022, 67 (01) : 170 - 177
  • [48] Low-velocity impact damage in laminated composites materials
    Wang, H
    Vu-Khanh, T
    IMPACT RESPONSE AND DYNAMIC FAILURE OF COMPOSITES AND LAMINATE MATERIALS, PTS 1 AND 2, 1998, 141-1 : 277 - 304
  • [49] EFFECT OF LOW-VELOCITY IMPACT ON THE RESIDUAL STRENGTH OF COMPOSITES
    BOLOTIN, VV
    SCHCHUGOREV, VN
    MECHANICS OF COMPOSITE MATERIALS, 1993, 29 (04) : 357 - 364
  • [50] Low-velocity impact damage in laminated composites materials
    Industrial Materials Inst, Boucherville, Canada
    Key Eng Mat, Pt 1 (277-304):