Alignments and network of graphite fillers to improve thermal conductivity of epoxy-based composites

被引:61
作者
Burger, N. [1 ,2 ]
Laachachi, A. [1 ]
Mortazavi, B. [3 ]
Ferriol, M. [2 ]
Lutz, M. [4 ]
Toniazzo, V. [1 ]
Ruch, D. [1 ]
机构
[1] LIST, Dept Mat Res & Technol MRT, ZAE Robert Steichen, L-4940 Hautcharage, Luxembourg
[2] Univ Lorraine, LMOPS, EA 4423, F-57070 Metz, France
[3] Bauhaus Univ Weimar, Inst Struct Mech, D-99423 Weimar, Germany
[4] Thales Alenia Space, Mech & Thermal Technol Dept, F-06156 Cannes La Bocca, France
关键词
Thermal conductivity; Composites; Alignment; Network; Epoxy; CARBON NANOTUBE ARRAY; POLYMER NANOCOMPOSITES; GRAPHENE;
D O I
10.1016/j.ijheatmasstransfer.2015.05.065
中图分类号
O414.1 [热力学];
学科分类号
摘要
Instead of improving the fillers dispersion in the matrix, some fillers alignments and structured composites were investigated in order to highlight their impact on thermal conductivity. Whereas well dispersed graphite-nanocomposites show some limit to reach high thermal conductivity values (0.84 W m(-1) K-1 at 12 wt.%), 3D-structured composite or Z-pinning samples display much better enhancements of apparent thermal conductivity, reaching 2.1 W m(-1) K-1 at 15 wt.%. Impact of insulating DGEBA interfaces was also investigated in this work. It was demonstrated that only two 4 mu m-DGEBA layers cutting the fibers alignment is enough to bring thermal conductivity back to the value of the non-structured nanocomposite, losing all the positive impact of alignment. Mathematical evaluations helped estimating the through-plane thermal conductivities of the samples, highlighting the negative impact of interfaces, and displaying the major difference between a 3D-network sample and a Z-pinned aligned sample. Whereas the 3D-network sample displays a relatively good improvement of both in-plane and through-plane thermal conductivities, the Z-pinned sample presents a considerable increase of the through-plane thermal conductivity (until 6.8 W m(-1) K-1), but also a negligible effect on the in-plane thermal conductivity. Resulting apparent thermal conductivities of both samples are finally quite comparable and more than doubled compared to non-structured nanocomposites. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:505 / 513
页数:9
相关论文
共 14 条
[1]   Thermal Conductivity of Carbon Nanotube Array Laminated Composite Materials [J].
Abot, Jandro L. ;
Bardin, Gregory ;
Spriegel, Courtney ;
Song, Yi ;
Raghavan, Vasudevan ;
Govindaraju, Nirmal .
JOURNAL OF COMPOSITE MATERIALS, 2011, 45 (03) :321-340
[2]   Thermal Conductivity of Polymer Nanocomposites Made With Carbon Nanofibers [J].
Agarwal, Sushant ;
Khan, M. Masud K. ;
Gupta, Rakesh K. .
POLYMER ENGINEERING AND SCIENCE, 2008, 48 (12) :2474-2481
[3]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[4]   Statistical continuum theory for the effective conductivity of carbon nanotubes filled polymer composites [J].
Baniassadi, M. ;
Laachachi, A. ;
Makradi, A. ;
Belouettar, S. ;
Ruch, D. ;
Muller, R. ;
Garmestani, H. ;
Toniazzo, V. ;
Ahzi, S. .
THERMOCHIMICA ACTA, 2011, 520 (1-2) :33-37
[5]   Photothermal Characterization of Nanocomposites Based on High Density Polyethylene (HDPE) Filled with Expanded Graphite [J].
Chirtoc, M. ;
Horny, N. ;
Henry, J-F. ;
Turgut, A. ;
Kokey, I. ;
Tavman, I. ;
Omastova, M. .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2012, 33 (10-11) :2110-2117
[6]  
Choi ES, J APPL PHYS, P94
[7]   Continuous carbon nanotube reinforced composites [J].
Ci, L. ;
Suhr, J. ;
Pushparaj, V. ;
Zhang, X. ;
Ajayan, P. M. .
NANO LETTERS, 2008, 8 (09) :2762-2766
[8]   Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review [J].
Han, Zhidong ;
Fina, Alberto .
PROGRESS IN POLYMER SCIENCE, 2011, 36 (07) :914-944
[9]   Thermal Conduction in Aligned Carbon Nanotube-Polymer Nanocomposites with High Packing Density [J].
Marconnett, Amy M. ;
Yamamoto, Namiko ;
Panzer, Matthew A. ;
Wardle, Brian L. ;
Goodson, Kenneth E. .
ACS NANO, 2011, 5 (06) :4818-4825
[10]   Evolution from graphite to graphene elastomer composites [J].
Sadasivuni, Kishor Kumar ;
Ponnamma, Deepalekshmi ;
Thomas, Sabu ;
Grohens, Yves .
PROGRESS IN POLYMER SCIENCE, 2014, 39 (04) :749-780