A MULTIPLE GENERALIZED FOURIER-FEYNMAN TRANSFORM VIA A ROTATION ON WIENER SPACE

被引:19
作者
Choi, Jae Gil [1 ]
Skoug, David [2 ]
Chang, Seung Jun [1 ]
机构
[1] Dankook Univ, Dept Math, Cheonan 330714, South Korea
[2] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
基金
新加坡国家研究基金会;
关键词
Paley-Wiener-Zygmund stochastic integral; Gaussian process; generalized Fourier-Feynman transform; multiple generalized Fourier-Feynman transform; generalized convolution product; CONVOLUTION;
D O I
10.1142/S0129167X12500681
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we use a rotation property of Wiener measure to define a very general multiple Fourier-Feynman transform on Wiener space. We then proceed to establish its many algebraic properties as well as to establish several relationships between this generalized multiple transform and the corresponding generalized convolution product.
引用
收藏
页数:20
相关论文
共 25 条
[1]  
Ahn J.M., 1998, B KOREAN MATH SOC, V35, P99
[2]   Multiple Lp Fourier-Feymnan transforms on abstract Wiener space [J].
Ahn, JM ;
Kim, HG .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2006, 17 (01) :1-26
[3]   ROTATIONS IN THE PRODUCT OF 2 WIENER SPACES [J].
BEARMAN, JE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 3 (01) :129-137
[4]  
Brue M. D., 1972, Ph.D. Thesis
[5]  
CAMERON RH, 1976, MICH MATH J, V23, P1
[6]   OPERATOR VALUED YEH-WIENER INTEGRAL, AND A WIENER INTEGRAL-EQUATION [J].
CAMERON, RH ;
STORVICK, DA .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1976, 25 (03) :235-258
[7]   Relationships involving generalized Fourier-Feynman transform, convolution and first variation [J].
Chang, KS ;
Cho, DH ;
Kim, BS ;
Song, TS ;
Yoo, I .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2005, 16 (5-6) :391-405
[8]  
Choi J. G., GEN FOURIER FE UNPUB
[9]  
CHUNG DM, 1993, MICH MATH J, V40, P377
[10]   Generalized integral transforms and convolution products on function space [J].
Chung, Hyun Soo ;
Tuan, Vu Kim .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (08) :573-586