A Machine-Learning-Aided Visual Analysis Workflow for Investigating Air Pollution Data

被引:4
作者
Kuo, Yun-Hsin [1 ]
Fujiwara, Takanori [1 ]
Chou, Charles C-K [2 ]
Chen, Chun-houh [2 ]
Ma, Kwan-Liu [1 ]
机构
[1] Univ Calif Davis, Davis, CA 95616 USA
[2] Acad Sinica, Taipei, Taiwan
来源
2022 IEEE 15TH PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS 2022) | 2022年
基金
美国国家科学基金会;
关键词
Visual analytics; machine learning; analysis workflow; dimensionality reduction; matrix factorization; air pollution; SOURCE APPORTIONMENT; PARTICULATE MATTER; QUALITY; FRAMEWORK; PM2.5; TIME; ANALYTICS; EMISSIONS; CLIMATE; HEALTH;
D O I
10.1109/PacificVis53943.2022.00018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Analyzing air pollution data is challenging as there are various analysis focuses from different aspects: feature (what), space (where), and time (when). As in most geospatial analysis problems, besides high-dimensional features, the temporal and spatial dependencies of air pollution induce the complexity of performing analysis. Machine learning methods, such as dimensionality reduction, can extract and summarize important information of the data to lift the burden of understanding such a complicated environment. In this paper, we present a methodology that utilizes multiple machine learning methods to uniformly explore these aspects. With this methodology, we develop a visual analytic system that supports a flexible analysis workflow, allowing domain experts to freely explore different aspects based on their analysis needs. We demonstrate the capability of our system and analysis workflow supporting a variety of analysis tasks with multiple use cases.
引用
收藏
页码:91 / 100
页数:10
相关论文
共 54 条
[41]   Dynamic mode decomposition of numerical and experimental data [J].
Schmid, Peter J. .
JOURNAL OF FLUID MECHANICS, 2010, 656 :5-28
[42]   Particulate matter properties and health effects:: consistency of epidemiological and toxicological studies [J].
Schwarze, P. E. ;
Ovrevik, J. ;
Lag, M. ;
Refsnes, M. ;
Nafstad, P. ;
Hetland, R. B. ;
Dybing, E. .
HUMAN & EXPERIMENTAL TOXICOLOGY, 2006, 25 (10) :559-579
[43]   The eyes have it: A task by data type taxonomy for information visualizations [J].
Shneiderman, B .
IEEE SYMPOSIUM ON VISUAL LANGUAGES, PROCEEDINGS, 1996, :336-343
[44]   Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles [J].
Simoneit, BRT ;
Schauer, JJ ;
Nolte, CG ;
Oros, DR ;
Elias, VO ;
Fraser, MP ;
Rogge, WF ;
Cass, GR .
ATMOSPHERIC ENVIRONMENT, 1999, 33 (02) :173-182
[45]  
United States Environmental Protection Agency, BIOG EM SOURC
[46]  
United States Environmental Protection Agency, CRIT AIR POLL
[47]  
US EPA, PREG AIR DAT
[48]   Chart Constellations: Effective Chart Summarization for Collaborative and Multi-User Analyses [J].
Xu, Shenyu ;
Bryan, Chris ;
Li, Jianping Kelvin ;
Zhao, Jian ;
Ma, Kwan-Liu .
COMPUTER GRAPHICS FORUM, 2018, 37 (03) :75-86
[49]   Deep Distributed Fusion Network for Air Quality Prediction [J].
Yi, Xiuwen ;
Zhang, Junbo ;
Wang, Zhaoyuan ;
Li, Tianrui ;
Zheng, Yu .
KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, :965-973
[50]  
Yixian Zheng, 2016, IEEE Transactions on Big Data, V2, P276, DOI 10.1109/TBDATA.2016.2586447