ON A POWERED BOHR INEQUALITY

被引:55
|
作者
Kayumov, Ilgiz R. [1 ]
Ponnusamy, Saminathan [2 ]
机构
[1] Kazan Fed Univ, Kremlevskaya 18, Kazan 420008, Russia
[2] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
关键词
Bounded analytic functions; p-symmetric functions; Bohr's inequality; subordination; harmonic mappings; Bieberbach-Eilenberg functions; THEOREM; SERIES;
D O I
10.5186/aasfm.2019.4416
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The object of this paper is to study the powered Bohr radius rho(p), p is an element of(1, 2), of analytic functions f(z) = Sigma(infinity)(k=0) a(k)z(k) defined on the unit disk vertical bar z vertical bar < 1 and such that vertical bar f(z)vertical bar < 1 for vertical bar z vertical bar < 1. More precisely, if M-p(f) (r) = Sigma(infinity)(k=0) vertical bar a(k)vertical bar(p)r(k), then we show that M-p(f)(r) <= 1 for r <= r(p) where r(rho) is the powered Bohr radius for conformal automorphisms of the unit disk. This answers the open problem posed by Djakov and Ramanujan in 2000. A couple of other consequences of our approach is also stated, including an asymptotically sharp form of one of the results of Djakov and Ramanujan. In addition, we consider a similar problem for sense-preserving harmonic mappings in vertical bar z vertical bar < 1. Finally, we conclude by stating the Bohr radius for the class of Bieberbach-Eilenberg functions.
引用
收藏
页码:301 / 310
页数:10
相关论文
共 50 条
  • [31] Bohr's inequalities for the analytic functions with lacunary series and harmonic functions
    Kayumov, Ilgiz R.
    Ponnusamy, Saminathan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 465 (02) : 857 - 871
  • [32] A Generalization of the Bohr–Rogosinski Sum
    S. Kumar
    S. K. Sahoo
    Lobachevskii Journal of Mathematics, 2022, 43 : 2176 - 2186
  • [33] Bohr-Rogosinski Inequalities for Certain Fully Starlike Harmonic Mappings
    Ahamed, Molla Basir
    Allu, Vasudevarao
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (04) : 1913 - 1927
  • [34] Bohr-type inequalities for bounded analytic functions of Schwarz functions
    Hu, Xiaojun
    Wang, Qihan
    Long, Boyong
    AIMS MATHEMATICS, 2021, 6 (12): : 13608 - 13621
  • [35] A Generalized Bohr-Rogosinski Phenomenon
    Gangania, Kamaljeet
    Kumar, S. Sivaprasad
    IRANIAN JOURNAL OF SCIENCE, 2023, 47 (01) : 187 - 198
  • [36] The Bohr radius and the Hadamard convolution operator
    Sh, Khasyanov R. .
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
  • [37] Bohr phenomenon for harmonic Bloch functions
    Allu, V.
    Halder, H.
    ANALYSIS MATHEMATICA, 2025, 51 (01) : 35 - 62
  • [38] The Bohr operator on analytic functions and sections
    Abu-Muhanna, Yusuf
    Ali, Rosihan M.
    Lee, See Keong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 496 (02)
  • [39] Bohr-Type Inequalities with One Parameter for Bounded Analytic Functions of Schwarz Functions
    Hu, Xiaojun
    Wang, Qihan
    Long, Boyong
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (01) : 575 - 591
  • [40] Bohr phenomenon for certain subclass of harmonic mappings
    Meher, Akash
    Gochhayat, Priyabrat
    JOURNAL OF ANALYSIS, 2024, 32 (06) : 3421 - 3451