ON A POWERED BOHR INEQUALITY

被引:57
作者
Kayumov, Ilgiz R. [1 ]
Ponnusamy, Saminathan [2 ]
机构
[1] Kazan Fed Univ, Kremlevskaya 18, Kazan 420008, Russia
[2] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
关键词
Bounded analytic functions; p-symmetric functions; Bohr's inequality; subordination; harmonic mappings; Bieberbach-Eilenberg functions; THEOREM; SERIES;
D O I
10.5186/aasfm.2019.4416
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The object of this paper is to study the powered Bohr radius rho(p), p is an element of(1, 2), of analytic functions f(z) = Sigma(infinity)(k=0) a(k)z(k) defined on the unit disk vertical bar z vertical bar < 1 and such that vertical bar f(z)vertical bar < 1 for vertical bar z vertical bar < 1. More precisely, if M-p(f) (r) = Sigma(infinity)(k=0) vertical bar a(k)vertical bar(p)r(k), then we show that M-p(f)(r) <= 1 for r <= r(p) where r(rho) is the powered Bohr radius for conformal automorphisms of the unit disk. This answers the open problem posed by Djakov and Ramanujan in 2000. A couple of other consequences of our approach is also stated, including an asymptotically sharp form of one of the results of Djakov and Ramanujan. In addition, we consider a similar problem for sense-preserving harmonic mappings in vertical bar z vertical bar < 1. Finally, we conclude by stating the Bohr radius for the class of Bieberbach-Eilenberg functions.
引用
收藏
页码:301 / 310
页数:10
相关论文
共 16 条
[1]  
Abu Muhanna Y, 2017, SPRINGER OPTIM APPL, V117, P269, DOI 10.1007/978-3-319-49242-1_13
[2]   ON BIEBERBACH-EILENBERG FUNCTIONS [J].
AHARONOV, D .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 76 (01) :101-&
[3]  
Aizenberg L, 2005, OPER THEOR, V158, P87
[4]   Multidimensional analogues of Bohr's theorem on power series [J].
Aizenberg, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (04) :1147-1155
[5]   Bohr's power series theorem in several variables [J].
Boas, HP ;
Khavinson, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (10) :2975-2979
[6]  
Bohr H, 1914, P LOND MATH SOC, V13, P1
[7]  
Bombieri E, 2004, INT MATH RES NOTICES, V2004, P4307
[8]  
Bombieri E., 1962, B UNIONE MAT ITAL, V17, P276
[9]  
CLUNIE J, 1984, ANN ACAD SCI FENN-M, V9, P3
[10]  
Djakov P. B., 2000, J. Anal., V8, P65