Transport and nonequilibrium phase transitions in polygonal urn models

被引:4
作者
Cirillo, Emilio N. M. [1 ]
Colangeli, Matteo [2 ]
Di Francesco, Antonio [2 ]
Kroger, Martin [3 ]
Rondoni, Lamberto [4 ,5 ]
机构
[1] Sapienza Univ Roma, Dipartimento Sci Base & Applicate Ingn, Via A Scarpa 16, I-00161 Rome, Italy
[2] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio, I-67100 Laquila, Italy
[3] Swiss Fed Inst Technol, Dept Mat, Polymer Phys, CH-8093 Zurich, Switzerland
[4] Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[5] Ist Nazl Fis Nucl, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy
关键词
ANOMALOUS DIFFUSION; RANDOM-WALKS; MECHANISMS; BILLIARDS; DYNAMICS; NETWORK; PATTERN; SYSTEM; RHYTHM;
D O I
10.1063/5.0101933
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the deterministic dynamics of N point particles moving at a constant speed in a 2D table made of two polygonal urns connected by an active rectangular channel, which applies a feedback control on the particles, inverting the horizontal component of their velocities when their number in the channel exceeds a fixed threshold. Such a bounce-back mechanism is non-dissipative: it preserves volumes in phase space. An additional passive channel closes the billiard table forming a circuit in which a stationary current may flow. Under specific constraints on the geometry and on the initial conditions, the large N limit allows nonequilibrium phase transitions between homogeneous and inhomogeneous phases. The role of ergodicity in making a probabilistic theory applicable is discussed for both rational and irrational urns. The theoretical predictions are compared with the numerical simulation results. Connections with the dynamics of feedback-controlled biological systems are highlighted. (C) 2022 Author(s).
引用
收藏
页数:18
相关论文
共 44 条
  • [1] Polygonal billiards and transport: Diffusion and heat conduction
    Alonso, D
    Ruiz, A
    de Vega, I
    [J]. PHYSICAL REVIEW E, 2002, 66 (06): : 15 - 066131
  • [2] Simple stochastic models showing strong anomalous diffusion
    Andersen, KH
    Castiglione, P
    Mazzino, A
    Vulpiani, A
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2000, 18 (03) : 447 - 452
  • [3] Fick and Fokker-Planck Diffusion Law in Inhomogeneous Media
    Andreucci, D.
    Cirillo, E. N. M.
    Colangeli, M.
    Gabrielli, D.
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2019, 174 (02) : 469 - 493
  • [4] Anomalous transport: A deterministic approach
    Artuso, R
    Cristadoro, G
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (24) : 4
  • [5] ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS
    BOUCHAUD, JP
    GEORGES, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5): : 127 - 293
  • [6] Transient Anomalous Diffusion of Telomeres in the Nucleus of Mammalian Cells
    Bronstein, I.
    Israel, Y.
    Kepten, E.
    Mai, S.
    Shav-Tal, Y.
    Barkai, E.
    Garini, Y.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (01)
  • [7] The Circadian System: A Regulatory Feedback Network of Periphery and Brain
    Buijs, Frederik N.
    Leon-Mercado, Luis
    Guzman-Ruiz, Mara
    Guerrero-Vargas, Natali N.
    Romo-Nava, Francisco
    Buijs, Ruud M.
    [J]. PHYSIOLOGY, 2016, 31 (03) : 170 - 181
  • [8] ERGODIC PROPERTIES OF NOWHERE DISPERSING BILLIARDS
    BUNIMOVICH, LA
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 65 (03) : 295 - 312
  • [9] Diffusion in Confined Geometries
    Burada, P. Sekhar
    Haenggi, Peter
    Marchesoni, Fabio
    Schmid, Gerhard
    Talkner, Peter
    [J]. CHEMPHYSCHEM, 2009, 10 (01) : 45 - 54
  • [10] Residence time in one-dimensional random walks in presence of moving defects
    Cirillo, Emilio N. M.
    Colangeli, Matteo
    Di Francesco, Antonio
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2022, 69