Elucidation of proteostasis defects caused by osteogenesis imperfecta mutations in the collagen-?2(I) C-propeptide domain

被引:11
作者
Ngoc-Duc Doan [1 ]
Hosseini, Azade S. [1 ]
Bikovtseva, Agata A. [1 ]
Huang, Michelle S. [1 ]
DiChiara, Andrew S. [1 ]
Papa, Louis J., III [1 ]
Koller, Antonius [2 ]
Shoulders, Matthew D. [1 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] MIT, Koch Inst Integrat Canc Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 美国国家卫生研究院; 加拿大健康研究院;
关键词
procollagen; endoplasmic reticulum proteostasis; protein quality control; mass spectrometry-based interactome; extracellular matrix; protein folding; protein secretion; osteogenesis imperfecta; triple-helix assembly; C1163R C-Pro?2(I); proteostasis; collagen; ER quality control; CARBOXYL-TERMINAL PROPEPTIDE; I COLLAGEN; ENDOPLASMIC-RETICULUM; PRO-ALPHA-1(I) CHAIN; TRIMERIZATION; TRAFFICKING; PEPTIDES; PROTEINS; CELLS; MODEL;
D O I
10.1074/jbc.RA120.014071
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Intracellular collagen assembly begins with the oxidative folding of ?30-kDa C-terminal propeptide (C-Pro) domains. Folded C-Pro domains then template the formation of triple helices between appropriate partner strands. Numerous C-Pro missense variants that disrupt or delay triple-helix formation are known to cause disease, but our understanding of the specific proteostasis defects introduced by these variants remains immature. Moreover, it is unclear whether or not recognition and quality control of misfolded C-Pro domains is mediated by recognizing stalled assembly of triple-helical domains or by direct engagement of the C-Pro itself. Here, we integrate biochemical and cellular approaches to illuminate the proteostasis defects associated with osteogenesis imperfecta-causing mutations within the collagen-?2(I) C-Pro domain. We first show that ?C-Pro-only? constructs recapitulate key aspects of the behavior of full-length Col?2(I) constructs. Of the variants studied, perhaps the most severe assembly defects are associated with C1163R C-Pro?2(I), which is incapable of forming stable trimers and is retained within cells. We find that the presence or absence of an unassembled triple-helical domain is not the key feature driving cellular retentionversussecretion. Rather, the proteostasis network directly engages the misfolded C-Pro domain itself to prevent secretion and initiate clearance. Using MS-based proteomics, we elucidate how the endoplasmic reticulum (ER) proteostasis network differentially engages misfolded C1163R C-Pro?2(I) and targets it for ER-associated degradation. These results provide insights into collagen folding and quality control with the potential to inform the design of proteostasis network-targeted strategies for managing collagenopathies.
引用
收藏
页码:9959 / 9973
页数:15
相关论文
共 49 条
[1]   FOLDING MECHANISM OF THE TRIPLE HELIX IN TYPE-III COLAGEN AND TYPE-III PN-COLLAGEN - ROLE OF DISULFIDE BRIDGES AND PEPTIDE-BOND ISOMERIZATION [J].
BACHINGER, HP ;
BRUCKNER, P ;
TIMPL, R ;
PROCKOP, DJ ;
ENGEL, J .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1980, 106 (02) :619-632
[2]   COL1A1 C-propeptide mutations cause ER mislocalization of procollagen and impair C-terminal procollagen processing [J].
Barnes, Aileen M. ;
Ashok, Aarthi ;
Makareeva, Elena N. ;
Brusel, Marina ;
Cabral, Wayne A. ;
Weis, MaryAnn ;
Moali, Catherine ;
Bettler, Emmanuel ;
Eyre, David R. ;
Cassella, John P. ;
Leikin, Sergey ;
Hulmes, David J. S. ;
Kessler, Efrat ;
Marini, Joan C. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2019, 1865 (09) :2210-2223
[3]   Effect of rapamycin on bone mass and strength in the α2(I)-G610C mouse model of osteogenesis imperfecta [J].
Bateman, John F. ;
Sampurno, Lisa ;
Maurizi, Antonio ;
Lamande, Shireen R. ;
Sims, Natalie A. ;
Cheng, Tegan L. ;
Schindeler, Aaron ;
Little, David G. .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2019, 23 (03) :1735-1745
[4]   Procollagen traverses the Golgi stack without leaving the lumen of Cisternae:: Evidence for cisternal maturation [J].
Bonfanti, L ;
Mironov, AA ;
Martínez-Menárguez, JA ;
Martella, O ;
Fusella, A ;
Baldassarre, M ;
Buccione, R ;
Geuze, HJ ;
Mironov, AA ;
Luini, A .
CELL, 1998, 95 (07) :993-1003
[5]   The crucial role of trimerization domains in collagen folding [J].
Boudko, Sergei P. ;
Engel, Juergen ;
Baechinger, Hans Peter .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2012, 44 (01) :21-32
[6]   Structural basis of fibrillar collagen trimerization and related genetic disorders [J].
Bourhis, Jean-Marie ;
Mariano, Natacha ;
Zhao, Yuguang ;
Harlos, Karl ;
Exposito, Jean-Yves ;
Jones, E. Yvonne ;
Moali, Catherine ;
Aghajari, Nushin ;
Hulmes, David J. S. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2012, 19 (10) :1031-U85
[7]   Nature designs tough collagen: Explaining the nanostructure of collagen fibrils [J].
Buehler, Markus J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (33) :12285-12290
[8]   Procollagen trafficking, processing and fibrillogenesis [J].
Canty, EG ;
Kadler, KE .
JOURNAL OF CELL SCIENCE, 2005, 118 (07) :1341-1353
[9]  
CHESSLER SD, 1993, J BIOL CHEM, V268, P18226
[10]   XBP1s Links the Unfolded Protein Response to the Molecular Architecture of Mature N-Glycans [J].
Dewal, Mahender B. ;
DiChiara, Andrew S. ;
Antonopoulos, Aristotelis ;
Taylor, Rebecca J. ;
Harmon, Chyleigh J. ;
Haslam, Stuart M. ;
Dell, Anne ;
Shoulders, Matthew D. .
CHEMISTRY & BIOLOGY, 2015, 22 (10) :1301-1312